|
|
|
|
<!DOCTYPE html>
|
|
|
|
|
|
|
|
|
|
<html>
|
|
|
|
|
|
|
|
|
|
<head>
|
|
|
|
|
|
|
|
|
|
<meta charset="utf-8" />
|
|
|
|
|
<meta name="generator" content="pandoc" />
|
|
|
|
|
<meta http-equiv="X-UA-Compatible" content="IE=EDGE" />
|
|
|
|
|
|
|
|
|
|
<meta name="viewport" content="width=device-width, initial-scale=1" />
|
|
|
|
|
|
|
|
|
|
<meta name="author" content="Norwin Roosen" />
|
|
|
|
|
|
|
|
|
|
<meta name="date" content="2023-02-23" />
|
|
|
|
|
|
|
|
|
|
<title>Exploring the openSenseMap Dataset</title>
|
|
|
|
|
|
|
|
|
|
<script>// Pandoc 2.9 adds attributes on both header and div. We remove the former (to
|
|
|
|
|
// be compatible with the behavior of Pandoc < 2.8).
|
|
|
|
|
document.addEventListener('DOMContentLoaded', function(e) {
|
|
|
|
|
var hs = document.querySelectorAll("div.section[class*='level'] > :first-child");
|
|
|
|
|
var i, h, a;
|
|
|
|
|
for (i = 0; i < hs.length; i++) {
|
|
|
|
|
h = hs[i];
|
|
|
|
|
if (!/^h[1-6]$/i.test(h.tagName)) continue; // it should be a header h1-h6
|
|
|
|
|
a = h.attributes;
|
|
|
|
|
while (a.length > 0) h.removeAttribute(a[0].name);
|
|
|
|
|
}
|
|
|
|
|
});
|
|
|
|
|
</script>
|
|
|
|
|
|
|
|
|
|
<style type="text/css">
|
|
|
|
|
code{white-space: pre-wrap;}
|
|
|
|
|
span.smallcaps{font-variant: small-caps;}
|
|
|
|
|
span.underline{text-decoration: underline;}
|
|
|
|
|
div.column{display: inline-block; vertical-align: top; width: 50%;}
|
|
|
|
|
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
|
|
|
|
|
ul.task-list{list-style: none;}
|
|
|
|
|
</style>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<style type="text/css">
|
|
|
|
|
code {
|
|
|
|
|
white-space: pre;
|
|
|
|
|
}
|
|
|
|
|
.sourceCode {
|
|
|
|
|
overflow: visible;
|
|
|
|
|
}
|
|
|
|
|
</style>
|
|
|
|
|
<style type="text/css" data-origin="pandoc">
|
|
|
|
|
pre > code.sourceCode { white-space: pre; position: relative; }
|
|
|
|
|
pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
|
|
|
|
|
pre > code.sourceCode > span:empty { height: 1.2em; }
|
|
|
|
|
.sourceCode { overflow: visible; }
|
|
|
|
|
code.sourceCode > span { color: inherit; text-decoration: inherit; }
|
|
|
|
|
div.sourceCode { margin: 1em 0; }
|
|
|
|
|
pre.sourceCode { margin: 0; }
|
|
|
|
|
@media screen {
|
|
|
|
|
div.sourceCode { overflow: auto; }
|
|
|
|
|
}
|
|
|
|
|
@media print {
|
|
|
|
|
pre > code.sourceCode { white-space: pre-wrap; }
|
|
|
|
|
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
|
|
|
|
|
}
|
|
|
|
|
pre.numberSource code
|
|
|
|
|
{ counter-reset: source-line 0; }
|
|
|
|
|
pre.numberSource code > span
|
|
|
|
|
{ position: relative; left: -4em; counter-increment: source-line; }
|
|
|
|
|
pre.numberSource code > span > a:first-child::before
|
|
|
|
|
{ content: counter(source-line);
|
|
|
|
|
position: relative; left: -1em; text-align: right; vertical-align: baseline;
|
|
|
|
|
border: none; display: inline-block;
|
|
|
|
|
-webkit-touch-callout: none; -webkit-user-select: none;
|
|
|
|
|
-khtml-user-select: none; -moz-user-select: none;
|
|
|
|
|
-ms-user-select: none; user-select: none;
|
|
|
|
|
padding: 0 4px; width: 4em;
|
|
|
|
|
color: #aaaaaa;
|
|
|
|
|
}
|
|
|
|
|
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
|
|
|
|
|
div.sourceCode
|
|
|
|
|
{ }
|
|
|
|
|
@media screen {
|
|
|
|
|
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
|
|
|
|
|
}
|
|
|
|
|
code span.al { color: #ff0000; font-weight: bold; }
|
|
|
|
|
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; }
|
|
|
|
|
code span.at { color: #7d9029; }
|
|
|
|
|
code span.bn { color: #40a070; }
|
|
|
|
|
code span.bu { color: #008000; }
|
|
|
|
|
code span.cf { color: #007020; font-weight: bold; }
|
|
|
|
|
code span.ch { color: #4070a0; }
|
|
|
|
|
code span.cn { color: #880000; }
|
|
|
|
|
code span.co { color: #60a0b0; font-style: italic; }
|
|
|
|
|
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; }
|
|
|
|
|
code span.do { color: #ba2121; font-style: italic; }
|
|
|
|
|
code span.dt { color: #902000; }
|
|
|
|
|
code span.dv { color: #40a070; }
|
|
|
|
|
code span.er { color: #ff0000; font-weight: bold; }
|
|
|
|
|
code span.ex { }
|
|
|
|
|
code span.fl { color: #40a070; }
|
|
|
|
|
code span.fu { color: #06287e; }
|
|
|
|
|
code span.im { color: #008000; font-weight: bold; }
|
|
|
|
|
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; }
|
|
|
|
|
code span.kw { color: #007020; font-weight: bold; }
|
|
|
|
|
code span.op { color: #666666; }
|
|
|
|
|
code span.ot { color: #007020; }
|
|
|
|
|
code span.pp { color: #bc7a00; }
|
|
|
|
|
code span.sc { color: #4070a0; }
|
|
|
|
|
code span.ss { color: #bb6688; }
|
|
|
|
|
code span.st { color: #4070a0; }
|
|
|
|
|
code span.va { color: #19177c; }
|
|
|
|
|
code span.vs { color: #4070a0; }
|
|
|
|
|
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; }
|
|
|
|
|
</style>
|
|
|
|
|
<script>
|
|
|
|
|
// apply pandoc div.sourceCode style to pre.sourceCode instead
|
|
|
|
|
(function() {
|
|
|
|
|
var sheets = document.styleSheets;
|
|
|
|
|
for (var i = 0; i < sheets.length; i++) {
|
|
|
|
|
if (sheets[i].ownerNode.dataset["origin"] !== "pandoc") continue;
|
|
|
|
|
try { var rules = sheets[i].cssRules; } catch (e) { continue; }
|
|
|
|
|
var j = 0;
|
|
|
|
|
while (j < rules.length) {
|
|
|
|
|
var rule = rules[j];
|
|
|
|
|
// check if there is a div.sourceCode rule
|
|
|
|
|
if (rule.type !== rule.STYLE_RULE || rule.selectorText !== "div.sourceCode") {
|
|
|
|
|
j++;
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
var style = rule.style.cssText;
|
|
|
|
|
// check if color or background-color is set
|
|
|
|
|
if (rule.style.color === '' && rule.style.backgroundColor === '') {
|
|
|
|
|
j++;
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
// replace div.sourceCode by a pre.sourceCode rule
|
|
|
|
|
sheets[i].deleteRule(j);
|
|
|
|
|
sheets[i].insertRule('pre.sourceCode{' + style + '}', j);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
})();
|
|
|
|
|
</script>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<style type="text/css">body {
|
|
|
|
|
background-color: #fff;
|
|
|
|
|
margin: 1em auto;
|
|
|
|
|
max-width: 700px;
|
|
|
|
|
overflow: visible;
|
|
|
|
|
padding-left: 2em;
|
|
|
|
|
padding-right: 2em;
|
|
|
|
|
font-family: "Open Sans", "Helvetica Neue", Helvetica, Arial, sans-serif;
|
|
|
|
|
font-size: 14px;
|
|
|
|
|
line-height: 1.35;
|
|
|
|
|
}
|
|
|
|
|
#TOC {
|
|
|
|
|
clear: both;
|
|
|
|
|
margin: 0 0 10px 10px;
|
|
|
|
|
padding: 4px;
|
|
|
|
|
width: 400px;
|
|
|
|
|
border: 1px solid #CCCCCC;
|
|
|
|
|
border-radius: 5px;
|
|
|
|
|
background-color: #f6f6f6;
|
|
|
|
|
font-size: 13px;
|
|
|
|
|
line-height: 1.3;
|
|
|
|
|
}
|
|
|
|
|
#TOC .toctitle {
|
|
|
|
|
font-weight: bold;
|
|
|
|
|
font-size: 15px;
|
|
|
|
|
margin-left: 5px;
|
|
|
|
|
}
|
|
|
|
|
#TOC ul {
|
|
|
|
|
padding-left: 40px;
|
|
|
|
|
margin-left: -1.5em;
|
|
|
|
|
margin-top: 5px;
|
|
|
|
|
margin-bottom: 5px;
|
|
|
|
|
}
|
|
|
|
|
#TOC ul ul {
|
|
|
|
|
margin-left: -2em;
|
|
|
|
|
}
|
|
|
|
|
#TOC li {
|
|
|
|
|
line-height: 16px;
|
|
|
|
|
}
|
|
|
|
|
table {
|
|
|
|
|
margin: 1em auto;
|
|
|
|
|
border-width: 1px;
|
|
|
|
|
border-color: #DDDDDD;
|
|
|
|
|
border-style: outset;
|
|
|
|
|
border-collapse: collapse;
|
|
|
|
|
}
|
|
|
|
|
table th {
|
|
|
|
|
border-width: 2px;
|
|
|
|
|
padding: 5px;
|
|
|
|
|
border-style: inset;
|
|
|
|
|
}
|
|
|
|
|
table td {
|
|
|
|
|
border-width: 1px;
|
|
|
|
|
border-style: inset;
|
|
|
|
|
line-height: 18px;
|
|
|
|
|
padding: 5px 5px;
|
|
|
|
|
}
|
|
|
|
|
table, table th, table td {
|
|
|
|
|
border-left-style: none;
|
|
|
|
|
border-right-style: none;
|
|
|
|
|
}
|
|
|
|
|
table thead, table tr.even {
|
|
|
|
|
background-color: #f7f7f7;
|
|
|
|
|
}
|
|
|
|
|
p {
|
|
|
|
|
margin: 0.5em 0;
|
|
|
|
|
}
|
|
|
|
|
blockquote {
|
|
|
|
|
background-color: #f6f6f6;
|
|
|
|
|
padding: 0.25em 0.75em;
|
|
|
|
|
}
|
|
|
|
|
hr {
|
|
|
|
|
border-style: solid;
|
|
|
|
|
border: none;
|
|
|
|
|
border-top: 1px solid #777;
|
|
|
|
|
margin: 28px 0;
|
|
|
|
|
}
|
|
|
|
|
dl {
|
|
|
|
|
margin-left: 0;
|
|
|
|
|
}
|
|
|
|
|
dl dd {
|
|
|
|
|
margin-bottom: 13px;
|
|
|
|
|
margin-left: 13px;
|
|
|
|
|
}
|
|
|
|
|
dl dt {
|
|
|
|
|
font-weight: bold;
|
|
|
|
|
}
|
|
|
|
|
ul {
|
|
|
|
|
margin-top: 0;
|
|
|
|
|
}
|
|
|
|
|
ul li {
|
|
|
|
|
list-style: circle outside;
|
|
|
|
|
}
|
|
|
|
|
ul ul {
|
|
|
|
|
margin-bottom: 0;
|
|
|
|
|
}
|
|
|
|
|
pre, code {
|
|
|
|
|
background-color: #f7f7f7;
|
|
|
|
|
border-radius: 3px;
|
|
|
|
|
color: #333;
|
|
|
|
|
white-space: pre-wrap;
|
|
|
|
|
}
|
|
|
|
|
pre {
|
|
|
|
|
border-radius: 3px;
|
|
|
|
|
margin: 5px 0px 10px 0px;
|
|
|
|
|
padding: 10px;
|
|
|
|
|
}
|
|
|
|
|
pre:not([class]) {
|
|
|
|
|
background-color: #f7f7f7;
|
|
|
|
|
}
|
|
|
|
|
code {
|
|
|
|
|
font-family: Consolas, Monaco, 'Courier New', monospace;
|
|
|
|
|
font-size: 85%;
|
|
|
|
|
}
|
|
|
|
|
p > code, li > code {
|
|
|
|
|
padding: 2px 0px;
|
|
|
|
|
}
|
|
|
|
|
div.figure {
|
|
|
|
|
text-align: center;
|
|
|
|
|
}
|
|
|
|
|
img {
|
|
|
|
|
background-color: #FFFFFF;
|
|
|
|
|
padding: 2px;
|
|
|
|
|
border: 1px solid #DDDDDD;
|
|
|
|
|
border-radius: 3px;
|
|
|
|
|
border: 1px solid #CCCCCC;
|
|
|
|
|
margin: 0 5px;
|
|
|
|
|
}
|
|
|
|
|
h1 {
|
|
|
|
|
margin-top: 0;
|
|
|
|
|
font-size: 35px;
|
|
|
|
|
line-height: 40px;
|
|
|
|
|
}
|
|
|
|
|
h2 {
|
|
|
|
|
border-bottom: 4px solid #f7f7f7;
|
|
|
|
|
padding-top: 10px;
|
|
|
|
|
padding-bottom: 2px;
|
|
|
|
|
font-size: 145%;
|
|
|
|
|
}
|
|
|
|
|
h3 {
|
|
|
|
|
border-bottom: 2px solid #f7f7f7;
|
|
|
|
|
padding-top: 10px;
|
|
|
|
|
font-size: 120%;
|
|
|
|
|
}
|
|
|
|
|
h4 {
|
|
|
|
|
border-bottom: 1px solid #f7f7f7;
|
|
|
|
|
margin-left: 8px;
|
|
|
|
|
font-size: 105%;
|
|
|
|
|
}
|
|
|
|
|
h5, h6 {
|
|
|
|
|
border-bottom: 1px solid #ccc;
|
|
|
|
|
font-size: 105%;
|
|
|
|
|
}
|
|
|
|
|
a {
|
|
|
|
|
color: #0033dd;
|
|
|
|
|
text-decoration: none;
|
|
|
|
|
}
|
|
|
|
|
a:hover {
|
|
|
|
|
color: #6666ff; }
|
|
|
|
|
a:visited {
|
|
|
|
|
color: #800080; }
|
|
|
|
|
a:visited:hover {
|
|
|
|
|
color: #BB00BB; }
|
|
|
|
|
a[href^="http:"] {
|
|
|
|
|
text-decoration: underline; }
|
|
|
|
|
a[href^="https:"] {
|
|
|
|
|
text-decoration: underline; }
|
|
|
|
|
|
|
|
|
|
code > span.kw { color: #555; font-weight: bold; }
|
|
|
|
|
code > span.dt { color: #902000; }
|
|
|
|
|
code > span.dv { color: #40a070; }
|
|
|
|
|
code > span.bn { color: #d14; }
|
|
|
|
|
code > span.fl { color: #d14; }
|
|
|
|
|
code > span.ch { color: #d14; }
|
|
|
|
|
code > span.st { color: #d14; }
|
|
|
|
|
code > span.co { color: #888888; font-style: italic; }
|
|
|
|
|
code > span.ot { color: #007020; }
|
|
|
|
|
code > span.al { color: #ff0000; font-weight: bold; }
|
|
|
|
|
code > span.fu { color: #900; font-weight: bold; }
|
|
|
|
|
code > span.er { color: #a61717; background-color: #e3d2d2; }
|
|
|
|
|
</style>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
</head>
|
|
|
|
|
|
|
|
|
|
<body>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<h1 class="title toc-ignore">Exploring the openSenseMap Dataset</h1>
|
|
|
|
|
<h4 class="author">Norwin Roosen</h4>
|
|
|
|
|
<h4 class="date">2023-02-23</h4>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<p>This package provides data ingestion functions for almost any data
|
|
|
|
|
stored on the open data platform for environmental sensordata <a href="https://opensensemap.org" class="uri">https://opensensemap.org</a>. Its main goals are to provide
|
|
|
|
|
means for:</p>
|
|
|
|
|
<ul>
|
|
|
|
|
<li>big data analysis of the measurements stored on the platform</li>
|
|
|
|
|
<li>sensor metadata analysis (sensor counts, spatial distribution,
|
|
|
|
|
temporal trends)</li>
|
|
|
|
|
</ul>
|
|
|
|
|
<div id="exploring-the-dataset" class="section level3">
|
|
|
|
|
<h3>Exploring the dataset</h3>
|
|
|
|
|
<p>Before we look at actual observations, lets get a grasp of the
|
|
|
|
|
openSenseMap datasets’ structure.</p>
|
|
|
|
|
<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(magrittr)</span>
|
|
|
|
|
<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(opensensmapr)</span>
|
|
|
|
|
<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a></span>
|
|
|
|
|
<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a>all_sensors <span class="ot">=</span> <span class="fu">osem_boxes</span>()</span></code></pre></div>
|
|
|
|
|
<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="fu">summary</span>(all_sensors)</span></code></pre></div>
|
|
|
|
|
<pre><code>## boxes total: 11367
|
|
|
|
|
##
|
|
|
|
|
## boxes by exposure:
|
|
|
|
|
## indoor mobile outdoor unknown
|
|
|
|
|
## 2344 591 8413 19
|
|
|
|
|
##
|
|
|
|
|
## boxes by model:
|
|
|
|
|
## custom hackair_home_v2 homeEthernet
|
|
|
|
|
## 2776 73 73
|
|
|
|
|
## homeEthernetFeinstaub homeV2Ethernet homeV2EthernetFeinstaub
|
|
|
|
|
## 55 21 40
|
|
|
|
|
## homeV2Lora homeV2Wifi homeV2WifiFeinstaub
|
|
|
|
|
## 246 578 743
|
|
|
|
|
## homeWifi homeWifiFeinstaub luftdaten_pms1003
|
|
|
|
|
## 215 222 9
|
|
|
|
|
## luftdaten_pms1003_bme280 luftdaten_pms3003 luftdaten_pms3003_bme280
|
|
|
|
|
## 10 1 7
|
|
|
|
|
## luftdaten_pms5003 luftdaten_pms5003_bme280 luftdaten_pms7003
|
|
|
|
|
## 7 60 6
|
|
|
|
|
## luftdaten_pms7003_bme280 luftdaten_sds011 luftdaten_sds011_bme280
|
|
|
|
|
## 78 285 3060
|
|
|
|
|
## luftdaten_sds011_bmp180 luftdaten_sds011_dht11 luftdaten_sds011_dht22
|
|
|
|
|
## 114 135 2553
|
|
|
|
|
##
|
|
|
|
|
## $last_measurement_within
|
|
|
|
|
## 1h 1d 30d 365d never
|
|
|
|
|
## 3601 3756 4252 5938 2052
|
|
|
|
|
##
|
|
|
|
|
## oldest box: 2016-08-09 19:34:42 (OBS Bohmte UK_02)
|
|
|
|
|
## newest box: 2023-02-23 07:56:59 (Steinbrink 29)
|
|
|
|
|
##
|
|
|
|
|
## sensors per box:
|
|
|
|
|
## Min. 1st Qu. Median Mean 3rd Qu. Max.
|
|
|
|
|
## 1.000 4.000 5.000 4.981 5.000 76.000</code></pre>
|
|
|
|
|
<p>This gives a good overview already: As of writing this, there are
|
|
|
|
|
more than 700 sensor stations, of which ~50% are currently running. Most
|
|
|
|
|
of them are placed outdoors and have around 5 sensors each. The oldest
|
|
|
|
|
station is from May 2014, while the latest station was registered a
|
|
|
|
|
couple of minutes ago.</p>
|
|
|
|
|
<p>Another feature of interest is the spatial distribution of the boxes:
|
|
|
|
|
<code>plot()</code> can help us out here. This function requires a bunch
|
|
|
|
|
of optional dependencies though.</p>
|
|
|
|
|
<div class="sourceCode" id="cb4"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a><span class="cf">if</span> (<span class="sc">!</span><span class="fu">require</span>(<span class="st">'maps'</span>)) <span class="fu">install.packages</span>(<span class="st">'maps'</span>)</span>
|
|
|
|
|
<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a><span class="cf">if</span> (<span class="sc">!</span><span class="fu">require</span>(<span class="st">'maptools'</span>)) <span class="fu">install.packages</span>(<span class="st">'maptools'</span>)</span>
|
|
|
|
|
<span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a><span class="cf">if</span> (<span class="sc">!</span><span class="fu">require</span>(<span class="st">'rgeos'</span>)) <span class="fu">install.packages</span>(<span class="st">'rgeos'</span>)</span>
|
|
|
|
|
<span id="cb4-4"><a href="#cb4-4" aria-hidden="true" tabindex="-1"></a></span>
|
|
|
|
|
<span id="cb4-5"><a href="#cb4-5" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(all_sensors)</span></code></pre></div>
|
|
|
|
|
<p><img src="
|
|
|
|
|
<p>It seems we have to reduce our area of interest to Germany.</p>
|
|
|
|
|
<p>But what do these sensor stations actually measure? Lets find out.
|
|
|
|
|
<code>osem_phenomena()</code> gives us a named list of of the counts of
|
|
|
|
|
each observed phenomenon for the given set of sensor stations:</p>
|
|
|
|
|
<div class="sourceCode" id="cb5"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a>phenoms <span class="ot">=</span> <span class="fu">osem_phenomena</span>(all_sensors)</span>
|
|
|
|
|
<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(phenoms)</span></code></pre></div>
|
|
|
|
|
<pre><code>## List of 3289
|
|
|
|
|
## $ Temperatur : int 9385
|
|
|
|
|
## $ rel. Luftfeuchte : int 8317
|
|
|
|
|
## $ PM10 : int 8147
|
|
|
|
|
## $ PM2.5 : int 8135
|
|
|
|
|
## $ Luftdruck : int 5667
|
|
|
|
|
## $ Beleuchtungsstärke : int 1674
|
|
|
|
|
## $ UV-Intensität : int 1665
|
|
|
|
|
## $ Temperature : int 643
|
|
|
|
|
## $ Humidity : int 473
|
|
|
|
|
## $ VOC : int 422
|
|
|
|
|
## $ Luftfeuchte : int 362
|
|
|
|
|
## $ Lufttemperatur : int 356
|
|
|
|
|
## $ CO₂ : int 304
|
|
|
|
|
## $ Pressure : int 293
|
|
|
|
|
## $ Bodenfeuchte : int 284
|
|
|
|
|
## $ Luftfeuchtigkeit : int 272
|
|
|
|
|
## $ atm. Luftdruck : int 245
|
|
|
|
|
## $ Lautstärke : int 240
|
|
|
|
|
## $ PM01 : int 206
|
|
|
|
|
## $ IAQ : int 162
|
|
|
|
|
## $ Kalibrierungswert : int 156
|
|
|
|
|
## $ rel. Luftfeuchte SCD30 : int 156
|
|
|
|
|
## $ Bodentemperatur : int 155
|
|
|
|
|
## $ Temperatur SCD30 : int 154
|
|
|
|
|
## $ CO2eq : int 153
|
|
|
|
|
## $ Windgeschwindigkeit : int 152
|
|
|
|
|
## $ pH-Wert : int 123
|
|
|
|
|
## $ Gesamthärte : int 122
|
|
|
|
|
## $ Blei : int 120
|
|
|
|
|
## $ Eisen : int 120
|
|
|
|
|
## $ GesamthaerteLabor : int 120
|
|
|
|
|
## $ Gesamthärte 2 : int 120
|
|
|
|
|
## $ Kupfer C : int 120
|
|
|
|
|
## $ Kupfer D : int 120
|
|
|
|
|
## $ Kupfer1 : int 120
|
|
|
|
|
## $ Kupfer2 : int 120
|
|
|
|
|
## $ Nitrat : int 120
|
|
|
|
|
## $ Nitrit : int 120
|
|
|
|
|
## $ CO2 : int 112
|
|
|
|
|
## $ Feinstaub PM10 : int 98
|
|
|
|
|
## $ Windrichtung : int 82
|
|
|
|
|
## $ rel. Luftfeuchte (HECA) : int 74
|
|
|
|
|
## $ Temperatur (HECA) : int 72
|
|
|
|
|
## $ Temperatura : int 69
|
|
|
|
|
## $ Helligkeit : int 67
|
|
|
|
|
## $ Feinstaub PM2.5 : int 65
|
|
|
|
|
## $ Taupunkt : int 62
|
|
|
|
|
## $ Latitude : int 61
|
|
|
|
|
## $ Longtitude : int 58
|
|
|
|
|
## $ Durchschnitt Umgebungslautstärke : int 51
|
|
|
|
|
## $ Minimum Umgebungslautstärke : int 51
|
|
|
|
|
## $ UV-Index : int 49
|
|
|
|
|
## $ temperature : int 46
|
|
|
|
|
## $ Batterie : int 45
|
|
|
|
|
## $ Feinstaub PM1.0 : int 41
|
|
|
|
|
## $ Umgebungslautstärke : int 41
|
|
|
|
|
## $ UV : int 40
|
|
|
|
|
## $ humidity : int 38
|
|
|
|
|
## $ Abstand nach links : int 34
|
|
|
|
|
## $ Beschleunigung Z-Achse : int 34
|
|
|
|
|
## $ Beschleunigung X-Achse : int 33
|
|
|
|
|
## $ Beschleunigung Y-Achse : int 33
|
|
|
|
|
## $ Geschwindigkeit : int 33
|
|
|
|
|
## $ Niederschlag : int 33
|
|
|
|
|
## $ Feinstaub PM25 : int 32
|
|
|
|
|
## $ PM1 : int 32
|
|
|
|
|
## $ Abstand nach rechts : int 31
|
|
|
|
|
## $ PM1.0 : int 30
|
|
|
|
|
## $ rel. Luftfeuchtigkeit : int 30
|
|
|
|
|
## $ Relative Humidity : int 29
|
|
|
|
|
## $ Sonnenstrahlung : int 29
|
|
|
|
|
## $ Luftdruck relativ : int 28
|
|
|
|
|
## $ Luftdruck absolut : int 26
|
|
|
|
|
## $ Rain : int 26
|
|
|
|
|
## $ Regenrate : int 26
|
|
|
|
|
## $ CO2 Konzentration : int 25
|
|
|
|
|
## $ RSSI : int 22
|
|
|
|
|
## $ gefühlte Temperatur : int 22
|
|
|
|
|
## $ PM 2.5 : int 21
|
|
|
|
|
## $ Battery : int 20
|
|
|
|
|
## $ Ciśnienie : int 20
|
|
|
|
|
## $ Air Pressure : int 19
|
|
|
|
|
## $ Regen : int 19
|
|
|
|
|
## $ Schall : int 19
|
|
|
|
|
## $ Signal : int 19
|
|
|
|
|
## $ Ilmanpaine : int 18
|
|
|
|
|
## $ Lämpötila : int 18
|
|
|
|
|
## $ UV Index : int 18
|
|
|
|
|
## $ Wind speed : int 18
|
|
|
|
|
## $ PM 10 : int 17
|
|
|
|
|
## $ PM4 : int 17
|
|
|
|
|
## $ Air pressure : int 16
|
|
|
|
|
## $ Temperatur DHT22 : int 16
|
|
|
|
|
## $ Wind Direction : int 16
|
|
|
|
|
## $ Altitude : int 15
|
|
|
|
|
## $ Illuminance : int 15
|
|
|
|
|
## $ Speed : int 15
|
|
|
|
|
## $ Wind Speed : int 15
|
|
|
|
|
## $ pressure : int 15
|
|
|
|
|
## [list output truncated]</code></pre>
|
|
|
|
|
<p>Thats quite some noise there, with many phenomena being measured by a
|
|
|
|
|
single sensor only, or many duplicated phenomena due to slightly
|
|
|
|
|
different spellings. We should clean that up, but for now let’s just
|
|
|
|
|
filter out the noise and find those phenomena with high sensor
|
|
|
|
|
numbers:</p>
|
|
|
|
|
<div class="sourceCode" id="cb7"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a>phenoms[phenoms <span class="sc">></span> <span class="dv">20</span>]</span></code></pre></div>
|
|
|
|
|
<pre><code>## $Temperatur
|
|
|
|
|
## [1] 9385
|
|
|
|
|
##
|
|
|
|
|
## $`rel. Luftfeuchte`
|
|
|
|
|
## [1] 8317
|
|
|
|
|
##
|
|
|
|
|
## $PM10
|
|
|
|
|
## [1] 8147
|
|
|
|
|
##
|
|
|
|
|
## $PM2.5
|
|
|
|
|
## [1] 8135
|
|
|
|
|
##
|
|
|
|
|
## $Luftdruck
|
|
|
|
|
## [1] 5667
|
|
|
|
|
##
|
|
|
|
|
## $Beleuchtungsstärke
|
|
|
|
|
## [1] 1674
|
|
|
|
|
##
|
|
|
|
|
## $`UV-Intensität`
|
|
|
|
|
## [1] 1665
|
|
|
|
|
##
|
|
|
|
|
## $Temperature
|
|
|
|
|
## [1] 643
|
|
|
|
|
##
|
|
|
|
|
## $Humidity
|
|
|
|
|
## [1] 473
|
|
|
|
|
##
|
|
|
|
|
## $VOC
|
|
|
|
|
## [1] 422
|
|
|
|
|
##
|
|
|
|
|
## $Luftfeuchte
|
|
|
|
|
## [1] 362
|
|
|
|
|
##
|
|
|
|
|
## $Lufttemperatur
|
|
|
|
|
## [1] 356
|
|
|
|
|
##
|
|
|
|
|
## $`CO₂`
|
|
|
|
|
## [1] 304
|
|
|
|
|
##
|
|
|
|
|
## $Pressure
|
|
|
|
|
## [1] 293
|
|
|
|
|
##
|
|
|
|
|
## $Bodenfeuchte
|
|
|
|
|
## [1] 284
|
|
|
|
|
##
|
|
|
|
|
## $Luftfeuchtigkeit
|
|
|
|
|
## [1] 272
|
|
|
|
|
##
|
|
|
|
|
## $`atm. Luftdruck`
|
|
|
|
|
## [1] 245
|
|
|
|
|
##
|
|
|
|
|
## $Lautstärke
|
|
|
|
|
## [1] 240
|
|
|
|
|
##
|
|
|
|
|
## $PM01
|
|
|
|
|
## [1] 206
|
|
|
|
|
##
|
|
|
|
|
## $IAQ
|
|
|
|
|
## [1] 162
|
|
|
|
|
##
|
|
|
|
|
## $Kalibrierungswert
|
|
|
|
|
## [1] 156
|
|
|
|
|
##
|
|
|
|
|
## $`rel. Luftfeuchte SCD30`
|
|
|
|
|
## [1] 156
|
|
|
|
|
##
|
|
|
|
|
## $Bodentemperatur
|
|
|
|
|
## [1] 155
|
|
|
|
|
##
|
|
|
|
|
## $`Temperatur SCD30`
|
|
|
|
|
## [1] 154
|
|
|
|
|
##
|
|
|
|
|
## $CO2eq
|
|
|
|
|
## [1] 153
|
|
|
|
|
##
|
|
|
|
|
## $Windgeschwindigkeit
|
|
|
|
|
## [1] 152
|
|
|
|
|
##
|
|
|
|
|
## $`pH-Wert`
|
|
|
|
|
## [1] 123
|
|
|
|
|
##
|
|
|
|
|
## $Gesamthärte
|
|
|
|
|
## [1] 122
|
|
|
|
|
##
|
|
|
|
|
## $Blei
|
|
|
|
|
## [1] 120
|
|
|
|
|
##
|
|
|
|
|
## $Eisen
|
|
|
|
|
## [1] 120
|
|
|
|
|
##
|
|
|
|
|
## $GesamthaerteLabor
|
|
|
|
|
## [1] 120
|
|
|
|
|
##
|
|
|
|
|
## $`Gesamthärte 2`
|
|
|
|
|
## [1] 120
|
|
|
|
|
##
|
|
|
|
|
## $`Kupfer C`
|
|
|
|
|
## [1] 120
|
|
|
|
|
##
|
|
|
|
|
## $`Kupfer D`
|
|
|
|
|
## [1] 120
|
|
|
|
|
##
|
|
|
|
|
## $Kupfer1
|
|
|
|
|
## [1] 120
|
|
|
|
|
##
|
|
|
|
|
## $Kupfer2
|
|
|
|
|
## [1] 120
|
|
|
|
|
##
|
|
|
|
|
## $Nitrat
|
|
|
|
|
## [1] 120
|
|
|
|
|
##
|
|
|
|
|
## $Nitrit
|
|
|
|
|
## [1] 120
|
|
|
|
|
##
|
|
|
|
|
## $CO2
|
|
|
|
|
## [1] 112
|
|
|
|
|
##
|
|
|
|
|
## $`Feinstaub PM10`
|
|
|
|
|
## [1] 98
|
|
|
|
|
##
|
|
|
|
|
## $Windrichtung
|
|
|
|
|
## [1] 82
|
|
|
|
|
##
|
|
|
|
|
## $`rel. Luftfeuchte (HECA)`
|
|
|
|
|
## [1] 74
|
|
|
|
|
##
|
|
|
|
|
## $`Temperatur (HECA)`
|
|
|
|
|
## [1] 72
|
|
|
|
|
##
|
|
|
|
|
## $Temperatura
|
|
|
|
|
## [1] 69
|
|
|
|
|
##
|
|
|
|
|
## $Helligkeit
|
|
|
|
|
## [1] 67
|
|
|
|
|
##
|
|
|
|
|
## $`Feinstaub PM2.5`
|
|
|
|
|
## [1] 65
|
|
|
|
|
##
|
|
|
|
|
## $Taupunkt
|
|
|
|
|
## [1] 62
|
|
|
|
|
##
|
|
|
|
|
## $Latitude
|
|
|
|
|
## [1] 61
|
|
|
|
|
##
|
|
|
|
|
## $Longtitude
|
|
|
|
|
## [1] 58
|
|
|
|
|
##
|
|
|
|
|
## $`Durchschnitt Umgebungslautstärke`
|
|
|
|
|
## [1] 51
|
|
|
|
|
##
|
|
|
|
|
## $`Minimum Umgebungslautstärke`
|
|
|
|
|
## [1] 51
|
|
|
|
|
##
|
|
|
|
|
## $`UV-Index`
|
|
|
|
|
## [1] 49
|
|
|
|
|
##
|
|
|
|
|
## $temperature
|
|
|
|
|
## [1] 46
|
|
|
|
|
##
|
|
|
|
|
## $Batterie
|
|
|
|
|
## [1] 45
|
|
|
|
|
##
|
|
|
|
|
## $`Feinstaub PM1.0`
|
|
|
|
|
## [1] 41
|
|
|
|
|
##
|
|
|
|
|
## $Umgebungslautstärke
|
|
|
|
|
## [1] 41
|
|
|
|
|
##
|
|
|
|
|
## $UV
|
|
|
|
|
## [1] 40
|
|
|
|
|
##
|
|
|
|
|
## $humidity
|
|
|
|
|
## [1] 38
|
|
|
|
|
##
|
|
|
|
|
## $`Abstand nach links`
|
|
|
|
|
## [1] 34
|
|
|
|
|
##
|
|
|
|
|
## $`Beschleunigung Z-Achse`
|
|
|
|
|
## [1] 34
|
|
|
|
|
##
|
|
|
|
|
## $`Beschleunigung X-Achse`
|
|
|
|
|
## [1] 33
|
|
|
|
|
##
|
|
|
|
|
## $`Beschleunigung Y-Achse`
|
|
|
|
|
## [1] 33
|
|
|
|
|
##
|
|
|
|
|
## $Geschwindigkeit
|
|
|
|
|
## [1] 33
|
|
|
|
|
##
|
|
|
|
|
## $Niederschlag
|
|
|
|
|
## [1] 33
|
|
|
|
|
##
|
|
|
|
|
## $`Feinstaub PM25`
|
|
|
|
|
## [1] 32
|
|
|
|
|
##
|
|
|
|
|
## $PM1
|
|
|
|
|
## [1] 32
|
|
|
|
|
##
|
|
|
|
|
## $`Abstand nach rechts`
|
|
|
|
|
## [1] 31
|
|
|
|
|
##
|
|
|
|
|
## $PM1.0
|
|
|
|
|
## [1] 30
|
|
|
|
|
##
|
|
|
|
|
## $`rel. Luftfeuchtigkeit`
|
|
|
|
|
## [1] 30
|
|
|
|
|
##
|
|
|
|
|
## $`Relative Humidity`
|
|
|
|
|
## [1] 29
|
|
|
|
|
##
|
|
|
|
|
## $Sonnenstrahlung
|
|
|
|
|
## [1] 29
|
|
|
|
|
##
|
|
|
|
|
## $`Luftdruck relativ`
|
|
|
|
|
## [1] 28
|
|
|
|
|
##
|
|
|
|
|
## $`Luftdruck absolut`
|
|
|
|
|
## [1] 26
|
|
|
|
|
##
|
|
|
|
|
## $Rain
|
|
|
|
|
## [1] 26
|
|
|
|
|
##
|
|
|
|
|
## $Regenrate
|
|
|
|
|
## [1] 26
|
|
|
|
|
##
|
|
|
|
|
## $`CO2 Konzentration`
|
|
|
|
|
## [1] 25
|
|
|
|
|
##
|
|
|
|
|
## $RSSI
|
|
|
|
|
## [1] 22
|
|
|
|
|
##
|
|
|
|
|
## $`gefühlte Temperatur`
|
|
|
|
|
## [1] 22
|
|
|
|
|
##
|
|
|
|
|
## $`PM 2.5`
|
|
|
|
|
## [1] 21</code></pre>
|
|
|
|
|
<p>Alright, temperature it is! Fine particulate matter (PM2.5) seems to
|
|
|
|
|
be more interesting to analyze though. We should check how many sensor
|
|
|
|
|
stations provide useful data: We want only those boxes with a PM2.5
|
|
|
|
|
sensor, that are placed outdoors and are currently submitting
|
|
|
|
|
measurements:</p>
|
|
|
|
|
<div class="sourceCode" id="cb9"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a>pm25_sensors <span class="ot">=</span> <span class="fu">osem_boxes</span>(</span>
|
|
|
|
|
<span id="cb9-2"><a href="#cb9-2" aria-hidden="true" tabindex="-1"></a> <span class="at">exposure =</span> <span class="st">'outdoor'</span>,</span>
|
|
|
|
|
<span id="cb9-3"><a href="#cb9-3" aria-hidden="true" tabindex="-1"></a> <span class="at">date =</span> <span class="fu">Sys.time</span>(), <span class="co"># ±4 hours</span></span>
|
|
|
|
|
<span id="cb9-4"><a href="#cb9-4" aria-hidden="true" tabindex="-1"></a> <span class="at">phenomenon =</span> <span class="st">'PM2.5'</span></span>
|
|
|
|
|
<span id="cb9-5"><a href="#cb9-5" aria-hidden="true" tabindex="-1"></a>)</span></code></pre></div>
|
|
|
|
|
<div class="sourceCode" id="cb10"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a><span class="fu">summary</span>(pm25_sensors)</span></code></pre></div>
|
|
|
|
|
<pre><code>## boxes total: 3002
|
|
|
|
|
##
|
|
|
|
|
## boxes by exposure:
|
|
|
|
|
## outdoor
|
|
|
|
|
## 3002
|
|
|
|
|
##
|
|
|
|
|
## boxes by model:
|
|
|
|
|
## custom hackair_home_v2 homeEthernetFeinstaub
|
|
|
|
|
## 174 8 12
|
|
|
|
|
## homeV2EthernetFeinstaub homeV2Lora homeV2Wifi
|
|
|
|
|
## 10 21 2
|
|
|
|
|
## homeV2WifiFeinstaub homeWifi homeWifiFeinstaub
|
|
|
|
|
## 126 3 30
|
|
|
|
|
## luftdaten_pms1003 luftdaten_pms1003_bme280 luftdaten_pms5003
|
|
|
|
|
## 1 2 3
|
|
|
|
|
## luftdaten_pms5003_bme280 luftdaten_pms7003 luftdaten_pms7003_bme280
|
|
|
|
|
## 11 2 26
|
|
|
|
|
## luftdaten_sds011 luftdaten_sds011_bme280 luftdaten_sds011_bmp180
|
|
|
|
|
## 115 1365 59
|
|
|
|
|
## luftdaten_sds011_dht11 luftdaten_sds011_dht22
|
|
|
|
|
## 45 987
|
|
|
|
|
##
|
|
|
|
|
## $last_measurement_within
|
|
|
|
|
## 1h 1d 30d 365d never
|
|
|
|
|
## 2977 3002 3002 3002 0
|
|
|
|
|
##
|
|
|
|
|
## oldest box: 2017-03-03 18:20:43 (Witten Heven Dorf)
|
|
|
|
|
## newest box: 2023-02-23 07:56:59 (Steinbrink 29)
|
|
|
|
|
##
|
|
|
|
|
## sensors per box:
|
|
|
|
|
## Min. 1st Qu. Median Mean 3rd Qu. Max.
|
|
|
|
|
## 2.000 4.000 5.000 4.838 5.000 26.000</code></pre>
|
|
|
|
|
<div class="sourceCode" id="cb12"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(pm25_sensors)</span></code></pre></div>
|
|
|
|
|
<p><img src="
|
|
|
|
|
<p>Thats still more than 200 measuring stations, we can work with
|
|
|
|
|
that.</p>
|
|
|
|
|
</div>
|
|
|
|
|
<div id="analyzing-sensor-data" class="section level3">
|
|
|
|
|
<h3>Analyzing sensor data</h3>
|
|
|
|
|
<p>Having analyzed the available data sources, let’s finally get some
|
|
|
|
|
measurements. We could call <code>osem_measurements(pm25_sensors)</code>
|
|
|
|
|
now, however we are focusing on a restricted area of interest, the city
|
|
|
|
|
of Berlin. Luckily we can get the measurements filtered by a bounding
|
|
|
|
|
box:</p>
|
|
|
|
|
<div class="sourceCode" id="cb13"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb13-1"><a href="#cb13-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(sf)</span></code></pre></div>
|
|
|
|
|
<pre><code>## Linking to GEOS 3.9.3, GDAL 3.5.2, PROJ 8.2.1; sf_use_s2() is TRUE</code></pre>
|
|
|
|
|
<div class="sourceCode" id="cb15"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb15-1"><a href="#cb15-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(units)</span></code></pre></div>
|
|
|
|
|
<pre><code>## udunits database from C:/Software/RPackages/units/share/udunits/udunits2.xml</code></pre>
|
|
|
|
|
<div class="sourceCode" id="cb17"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb17-1"><a href="#cb17-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(lubridate)</span>
|
|
|
|
|
<span id="cb17-2"><a href="#cb17-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(dplyr)</span>
|
|
|
|
|
<span id="cb17-3"><a href="#cb17-3" aria-hidden="true" tabindex="-1"></a></span>
|
|
|
|
|
<span id="cb17-4"><a href="#cb17-4" aria-hidden="true" tabindex="-1"></a><span class="co"># construct a bounding box: 12 kilometers around Berlin</span></span>
|
|
|
|
|
<span id="cb17-5"><a href="#cb17-5" aria-hidden="true" tabindex="-1"></a>berlin <span class="ot">=</span> <span class="fu">st_point</span>(<span class="fu">c</span>(<span class="fl">13.4034</span>, <span class="fl">52.5120</span>)) <span class="sc">%>%</span></span>
|
|
|
|
|
<span id="cb17-6"><a href="#cb17-6" aria-hidden="true" tabindex="-1"></a> <span class="fu">st_sfc</span>(<span class="at">crs =</span> <span class="dv">4326</span>) <span class="sc">%>%</span></span>
|
|
|
|
|
<span id="cb17-7"><a href="#cb17-7" aria-hidden="true" tabindex="-1"></a> <span class="fu">st_transform</span>(<span class="dv">3857</span>) <span class="sc">%>%</span> <span class="co"># allow setting a buffer in meters</span></span>
|
|
|
|
|
<span id="cb17-8"><a href="#cb17-8" aria-hidden="true" tabindex="-1"></a> <span class="fu">st_buffer</span>(<span class="fu">set_units</span>(<span class="dv">12</span>, km)) <span class="sc">%>%</span></span>
|
|
|
|
|
<span id="cb17-9"><a href="#cb17-9" aria-hidden="true" tabindex="-1"></a> <span class="fu">st_transform</span>(<span class="dv">4326</span>) <span class="sc">%>%</span> <span class="co"># the opensensemap expects WGS 84</span></span>
|
|
|
|
|
<span id="cb17-10"><a href="#cb17-10" aria-hidden="true" tabindex="-1"></a> <span class="fu">st_bbox</span>()</span></code></pre></div>
|
|
|
|
|
<div class="sourceCode" id="cb18"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb18-1"><a href="#cb18-1" aria-hidden="true" tabindex="-1"></a>pm25 <span class="ot">=</span> <span class="fu">osem_measurements</span>(</span>
|
|
|
|
|
<span id="cb18-2"><a href="#cb18-2" aria-hidden="true" tabindex="-1"></a> berlin,</span>
|
|
|
|
|
<span id="cb18-3"><a href="#cb18-3" aria-hidden="true" tabindex="-1"></a> <span class="at">phenomenon =</span> <span class="st">'PM2.5'</span>,</span>
|
|
|
|
|
<span id="cb18-4"><a href="#cb18-4" aria-hidden="true" tabindex="-1"></a> <span class="at">from =</span> <span class="fu">now</span>() <span class="sc">-</span> <span class="fu">days</span>(<span class="dv">3</span>), <span class="co"># defaults to 2 days</span></span>
|
|
|
|
|
<span id="cb18-5"><a href="#cb18-5" aria-hidden="true" tabindex="-1"></a> <span class="at">to =</span> <span class="fu">now</span>()</span>
|
|
|
|
|
<span id="cb18-6"><a href="#cb18-6" aria-hidden="true" tabindex="-1"></a>)</span>
|
|
|
|
|
<span id="cb18-7"><a href="#cb18-7" aria-hidden="true" tabindex="-1"></a></span>
|
|
|
|
|
<span id="cb18-8"><a href="#cb18-8" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(pm25)</span></code></pre></div>
|
|
|
|
|
<p><img src="
|
|
|
|
|
<p>Now we can get started with actual spatiotemporal data analysis.
|
|
|
|
|
First, lets mask the seemingly uncalibrated sensors:</p>
|
|
|
|
|
<div class="sourceCode" id="cb19"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb19-1"><a href="#cb19-1" aria-hidden="true" tabindex="-1"></a>outliers <span class="ot">=</span> <span class="fu">filter</span>(pm25, value <span class="sc">></span> <span class="dv">100</span>)<span class="sc">$</span>sensorId</span>
|
|
|
|
|
<span id="cb19-2"><a href="#cb19-2" aria-hidden="true" tabindex="-1"></a>bad_sensors <span class="ot">=</span> outliers[, drop <span class="ot">=</span> T] <span class="sc">%>%</span> <span class="fu">levels</span>()</span>
|
|
|
|
|
<span id="cb19-3"><a href="#cb19-3" aria-hidden="true" tabindex="-1"></a></span>
|
|
|
|
|
<span id="cb19-4"><a href="#cb19-4" aria-hidden="true" tabindex="-1"></a>pm25 <span class="ot">=</span> <span class="fu">mutate</span>(pm25, <span class="at">invalid =</span> sensorId <span class="sc">%in%</span> bad_sensors)</span></code></pre></div>
|
|
|
|
|
<p>Then plot the measuring locations, flagging the outliers:</p>
|
|
|
|
|
<div class="sourceCode" id="cb20"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb20-1"><a href="#cb20-1" aria-hidden="true" tabindex="-1"></a><span class="fu">st_as_sf</span>(pm25) <span class="sc">%>%</span> <span class="fu">st_geometry</span>() <span class="sc">%>%</span> <span class="fu">plot</span>(<span class="at">col =</span> <span class="fu">factor</span>(pm25<span class="sc">$</span>invalid), <span class="at">axes =</span> T)</span></code></pre></div>
|
|
|
|
|
<p><img src="
|
|
|
|
|
<p>Removing these sensors yields a nicer time series plot:</p>
|
|
|
|
|
<div class="sourceCode" id="cb21"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb21-1"><a href="#cb21-1" aria-hidden="true" tabindex="-1"></a>pm25 <span class="sc">%>%</span> <span class="fu">filter</span>(invalid <span class="sc">==</span> <span class="cn">FALSE</span>) <span class="sc">%>%</span> <span class="fu">plot</span>()</span></code></pre></div>
|
|
|
|
|
<p><img src="
|
|
|
|
|
<p>Further analysis: comparison with LANUV data <code>TODO</code></p>
|
|
|
|
|
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<!-- code folding -->
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<!-- dynamically load mathjax for compatibility with self-contained -->
|
|
|
|
|
<script>
|
|
|
|
|
(function () {
|
|
|
|
|
var script = document.createElement("script");
|
|
|
|
|
script.type = "text/javascript";
|
|
|
|
|
script.src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
|
|
|
|
|
document.getElementsByTagName("head")[0].appendChild(script);
|
|
|
|
|
})();
|
|
|
|
|
</script>
|
|
|
|
|
|
|
|
|
|
</body>
|
|
|
|
|
</html>
|