add inst/doc

master
jan 2 years ago
parent 62667ef139
commit 37d4dde1d6

@ -0,0 +1,133 @@
## ----setup, results='hide', message=FALSE, warning=FALSE----------------------
# required packages:
library(opensensmapr) # data download
library(dplyr) # data wrangling
library(ggplot2) # plotting
library(lubridate) # date arithmetic
library(zoo) # rollmean()
## ----download-----------------------------------------------------------------
# if you want to see results for a specific subset of boxes,
# just specify a filter such as grouptag='ifgi' here
boxes = osem_boxes()
## ----exposure_counts, message=FALSE-------------------------------------------
exposure_counts = boxes %>%
group_by(exposure) %>%
mutate(count = row_number(createdAt))
exposure_colors = c(indoor = 'red', outdoor = 'lightgreen', mobile = 'blue', unknown = 'darkgrey')
ggplot(exposure_counts, aes(x = createdAt, y = count, colour = exposure)) +
geom_line() +
scale_colour_manual(values = exposure_colors) +
xlab('Registration Date') + ylab('senseBox count')
## ----exposure_summary---------------------------------------------------------
exposure_counts %>%
summarise(
oldest = min(createdAt),
newest = max(createdAt),
count = max(count)
) %>%
arrange(desc(count))
## ----grouptag_counts, message=FALSE-------------------------------------------
grouptag_counts = boxes %>%
group_by(grouptag) %>%
# only include grouptags with 8 or more members
filter(length(grouptag) >= 8 & !is.na(grouptag)) %>%
mutate(count = row_number(createdAt))
# helper for sorting the grouptags by boxcount
sortLvls = function(oldFactor, ascending = TRUE) {
lvls = table(oldFactor) %>% sort(., decreasing = !ascending) %>% names()
factor(oldFactor, levels = lvls)
}
grouptag_counts$grouptag = sortLvls(grouptag_counts$grouptag, ascending = FALSE)
ggplot(grouptag_counts, aes(x = createdAt, y = count, colour = grouptag)) +
geom_line(aes(group = grouptag)) +
xlab('Registration Date') + ylab('senseBox count')
## ----grouptag_summary---------------------------------------------------------
grouptag_counts %>%
summarise(
oldest = min(createdAt),
newest = max(createdAt),
count = max(count)
) %>%
arrange(desc(count))
## ----growthrate_registered, warning=FALSE, message=FALSE, results='hide'------
bins = 'week'
mvavg_bins = 6
growth = boxes %>%
mutate(week = cut(as.Date(createdAt), breaks = bins)) %>%
group_by(week) %>%
summarize(count = length(week)) %>%
mutate(event = 'registered')
## ----growthrate_inactive, warning=FALSE, message=FALSE, results='hide'--------
inactive = boxes %>%
# remove boxes that were updated in the last two days,
# b/c any box becomes inactive at some point by definition of updatedAt
filter(updatedAt < now() - days(2)) %>%
mutate(week = cut(as.Date(updatedAt), breaks = bins)) %>%
group_by(week) %>%
summarize(count = length(week)) %>%
mutate(event = 'inactive')
## ----growthrate, warning=FALSE, message=FALSE, results='hide'-----------------
boxes_by_date = bind_rows(growth, inactive) %>% group_by(event)
ggplot(boxes_by_date, aes(x = as.Date(week), colour = event)) +
xlab('Time') + ylab(paste('rate per ', bins)) +
scale_x_date(date_breaks="years", date_labels="%Y") +
scale_colour_manual(values = c(registered = 'lightgreen', inactive = 'grey')) +
geom_point(aes(y = count), size = 0.5) +
# moving average, make first and last value NA (to ensure identical length of vectors)
geom_line(aes(y = rollmean(count, mvavg_bins, fill = list(NA, NULL, NA))))
## ----exposure_duration, message=FALSE-----------------------------------------
duration = boxes %>%
group_by(exposure) %>%
filter(!is.na(updatedAt)) %>%
mutate(duration = difftime(updatedAt, createdAt, units='days'))
ggplot(duration, aes(x = exposure, y = duration)) +
geom_boxplot() +
coord_flip() + ylab('Duration active in Days')
## ----grouptag_duration, message=FALSE-----------------------------------------
duration = boxes %>%
group_by(grouptag) %>%
# only include grouptags with 8 or more members
filter(length(grouptag) >= 8 & !is.na(grouptag) & !is.na(updatedAt)) %>%
mutate(duration = difftime(updatedAt, createdAt, units='days'))
ggplot(duration, aes(x = grouptag, y = duration)) +
geom_boxplot() +
coord_flip() + ylab('Duration active in Days')
duration %>%
summarize(
duration_avg = round(mean(duration)),
duration_min = round(min(duration)),
duration_max = round(max(duration)),
oldest_box = round(max(difftime(now(), createdAt, units='days')))
) %>%
arrange(desc(duration_avg))
## ----year_duration, message=FALSE---------------------------------------------
# NOTE: boxes older than 2016 missing due to missing updatedAt in database
duration = boxes %>%
mutate(year = cut(as.Date(createdAt), breaks = 'year')) %>%
group_by(year) %>%
filter(!is.na(updatedAt)) %>%
mutate(duration = difftime(updatedAt, createdAt, units='days'))
ggplot(duration, aes(x = substr(as.character(year), 0, 4), y = duration)) +
geom_boxplot() +
coord_flip() + ylab('Duration active in Days') + xlab('Year of Registration')

@ -0,0 +1,243 @@
---
title: "Visualising the History of openSenseMap.org"
author: "Norwin Roosen"
date: '`r Sys.Date()`'
output:
rmarkdown::html_vignette:
df_print: kable
fig_height: 5
fig_width: 7
toc: yes
html_document:
code_folding: hide
df_print: kable
theme: lumen
toc: yes
toc_float: yes
vignette: >
%\VignetteIndexEntry{Visualising the History of openSenseMap.org}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
> This vignette serves as an example on data wrangling & visualization with
`opensensmapr`, `dplyr` and `ggplot2`.
```{r setup, results='hide', message=FALSE, warning=FALSE}
# required packages:
library(opensensmapr) # data download
library(dplyr) # data wrangling
library(ggplot2) # plotting
library(lubridate) # date arithmetic
library(zoo) # rollmean()
```
openSenseMap.org has grown quite a bit in the last years; it would be interesting
to see how we got to the current `r osem_counts()$boxes` sensor stations,
split up by various attributes of the boxes.
While `opensensmapr` provides extensive methods of filtering boxes by attributes
on the server, we do the filtering within R to save time and gain flexibility.
So the first step is to retrieve *all the boxes*:
```{r download}
# if you want to see results for a specific subset of boxes,
# just specify a filter such as grouptag='ifgi' here
boxes = osem_boxes()
```
# Plot count of boxes by time {.tabset}
By looking at the `createdAt` attribute of each box we know the exact time a box
was registered.
With this approach we have no information about boxes that were deleted in the
meantime, but that's okay for now.
## ...and exposure
```{r exposure_counts, message=FALSE}
exposure_counts = boxes %>%
group_by(exposure) %>%
mutate(count = row_number(createdAt))
exposure_colors = c(indoor = 'red', outdoor = 'lightgreen', mobile = 'blue', unknown = 'darkgrey')
ggplot(exposure_counts, aes(x = createdAt, y = count, colour = exposure)) +
geom_line() +
scale_colour_manual(values = exposure_colors) +
xlab('Registration Date') + ylab('senseBox count')
```
Outdoor boxes are growing *fast*!
We can also see the introduction of `mobile` sensor "stations" in 2017. While
mobile boxes are still few, we can expect a quick rise in 2018 once the new
senseBox MCU with GPS support is released.
Let's have a quick summary:
```{r exposure_summary}
exposure_counts %>%
summarise(
oldest = min(createdAt),
newest = max(createdAt),
count = max(count)
) %>%
arrange(desc(count))
```
## ...and grouptag
We can try to find out where the increases in growth came from, by analysing the
box count by grouptag.
Caveats: Only a small subset of boxes has a grouptag, and we should assume
that these groups are actually bigger. Also, we can see that grouptag naming is
inconsistent (`Luftdaten`, `luftdaten.info`, ...)
```{r grouptag_counts, message=FALSE}
grouptag_counts = boxes %>%
group_by(grouptag) %>%
# only include grouptags with 8 or more members
filter(length(grouptag) >= 8 & !is.na(grouptag)) %>%
mutate(count = row_number(createdAt))
# helper for sorting the grouptags by boxcount
sortLvls = function(oldFactor, ascending = TRUE) {
lvls = table(oldFactor) %>% sort(., decreasing = !ascending) %>% names()
factor(oldFactor, levels = lvls)
}
grouptag_counts$grouptag = sortLvls(grouptag_counts$grouptag, ascending = FALSE)
ggplot(grouptag_counts, aes(x = createdAt, y = count, colour = grouptag)) +
geom_line(aes(group = grouptag)) +
xlab('Registration Date') + ylab('senseBox count')
```
```{r grouptag_summary}
grouptag_counts %>%
summarise(
oldest = min(createdAt),
newest = max(createdAt),
count = max(count)
) %>%
arrange(desc(count))
```
# Plot rate of growth and inactivity per week
First we group the boxes by `createdAt` into bins of one week:
```{r growthrate_registered, warning=FALSE, message=FALSE, results='hide'}
bins = 'week'
mvavg_bins = 6
growth = boxes %>%
mutate(week = cut(as.Date(createdAt), breaks = bins)) %>%
group_by(week) %>%
summarize(count = length(week)) %>%
mutate(event = 'registered')
```
We can do the same for `updatedAt`, which informs us about the last change to
a box, including uploaded measurements.
This method of determining inactive boxes is fairly inaccurate and should be
considered an approximation, because we have no information about intermediate
inactive phases.
Also deleted boxes would probably have a big impact here.
```{r growthrate_inactive, warning=FALSE, message=FALSE, results='hide'}
inactive = boxes %>%
# remove boxes that were updated in the last two days,
# b/c any box becomes inactive at some point by definition of updatedAt
filter(updatedAt < now() - days(2)) %>%
mutate(week = cut(as.Date(updatedAt), breaks = bins)) %>%
group_by(week) %>%
summarize(count = length(week)) %>%
mutate(event = 'inactive')
```
Now we can combine both datasets for plotting:
```{r growthrate, warning=FALSE, message=FALSE, results='hide'}
boxes_by_date = bind_rows(growth, inactive) %>% group_by(event)
ggplot(boxes_by_date, aes(x = as.Date(week), colour = event)) +
xlab('Time') + ylab(paste('rate per ', bins)) +
scale_x_date(date_breaks="years", date_labels="%Y") +
scale_colour_manual(values = c(registered = 'lightgreen', inactive = 'grey')) +
geom_point(aes(y = count), size = 0.5) +
# moving average, make first and last value NA (to ensure identical length of vectors)
geom_line(aes(y = rollmean(count, mvavg_bins, fill = list(NA, NULL, NA))))
```
We see a sudden rise in early 2017, which lines up with the fast growing grouptag `Luftdaten`.
This was enabled by an integration of openSenseMap.org into the firmware of the
air quality monitoring project [luftdaten.info](https://sensor.community/de/).
The dips in mid 2017 and early 2018 could possibly be explained by production/delivery issues
of the senseBox hardware, but I have no data on the exact time frames to verify.
# Plot duration of boxes being active {.tabset}
While we are looking at `createdAt` and `updatedAt`, we can also extract the duration of activity
of each box, and look at metrics by exposure and grouptag once more:
## ...by exposure
```{r exposure_duration, message=FALSE}
duration = boxes %>%
group_by(exposure) %>%
filter(!is.na(updatedAt)) %>%
mutate(duration = difftime(updatedAt, createdAt, units='days'))
ggplot(duration, aes(x = exposure, y = duration)) +
geom_boxplot() +
coord_flip() + ylab('Duration active in Days')
```
The time of activity averages at only `r round(mean(duration$duration))` days,
though there are boxes with `r round(max(duration$duration))` days of activity,
spanning a large chunk of openSenseMap's existence.
## ...by grouptag
```{r grouptag_duration, message=FALSE}
duration = boxes %>%
group_by(grouptag) %>%
# only include grouptags with 8 or more members
filter(length(grouptag) >= 8 & !is.na(grouptag) & !is.na(updatedAt)) %>%
mutate(duration = difftime(updatedAt, createdAt, units='days'))
ggplot(duration, aes(x = grouptag, y = duration)) +
geom_boxplot() +
coord_flip() + ylab('Duration active in Days')
duration %>%
summarize(
duration_avg = round(mean(duration)),
duration_min = round(min(duration)),
duration_max = round(max(duration)),
oldest_box = round(max(difftime(now(), createdAt, units='days')))
) %>%
arrange(desc(duration_avg))
```
The time of activity averages at only `r round(mean(duration$duration))` days,
though there are boxes with `r round(max(duration$duration))` days of activity,
spanning a large chunk of openSenseMap's existence.
## ...by year of registration
This is less useful, as older boxes are active for a longer time by definition.
If you have an idea how to compensate for that, please send a [Pull Request][PR]!
```{r year_duration, message=FALSE}
# NOTE: boxes older than 2016 missing due to missing updatedAt in database
duration = boxes %>%
mutate(year = cut(as.Date(createdAt), breaks = 'year')) %>%
group_by(year) %>%
filter(!is.na(updatedAt)) %>%
mutate(duration = difftime(updatedAt, createdAt, units='days'))
ggplot(duration, aes(x = substr(as.character(year), 0, 4), y = duration)) +
geom_boxplot() +
coord_flip() + ylab('Duration active in Days') + xlab('Year of Registration')
```
# More Visualisations
Other visualisations come to mind, and are left as an exercise to the reader.
If you implemented some, feel free to add them to this vignette via a [Pull Request][PR].
* growth by phenomenon
* growth by location -> (interactive) map
* set inactive rate in relation to total box count
* filter timespans with big dips in growth rate, and extrapolate the amount of
senseBoxes that could be on the platform today, assuming there were no production issues ;)
[PR]: https://github.com/sensebox/opensensmapr/pulls

File diff suppressed because one or more lines are too long

@ -0,0 +1,162 @@
## ----setup, results='hide', message=FALSE, warning=FALSE----------------------
# required packages:
library(opensensmapr) # data download
library(dplyr) # data wrangling
library(ggplot2) # plotting
library(lubridate) # date arithmetic
library(zoo) # rollmean()
## ----download, results='hide', message=FALSE, warning=FALSE-------------------
# if you want to see results for a specific subset of boxes,
# just specify a filter such as grouptag='ifgi' here
boxes_all = osem_boxes()
boxes = boxes_all
## -----------------------------------------------------------------------------
boxes = filter(boxes, locationtimestamp >= "2022-01-01" & locationtimestamp <="2022-12-31")
summary(boxes) -> summary.data.frame
## ----message=F, warning=F-----------------------------------------------------
if (!require('maps')) install.packages('maps')
if (!require('maptools')) install.packages('maptools')
if (!require('rgeos')) install.packages('rgeos')
plot(boxes)
## -----------------------------------------------------------------------------
phenoms = osem_phenomena(boxes)
str(phenoms)
## -----------------------------------------------------------------------------
phenoms[phenoms > 50]
## ----exposure_counts, message=FALSE-------------------------------------------
exposure_counts = boxes %>%
group_by(exposure) %>%
mutate(count = row_number(locationtimestamp))
exposure_colors = c(indoor = 'red', outdoor = 'lightgreen', mobile = 'blue', unknown = 'darkgrey')
ggplot(exposure_counts, aes(x = locationtimestamp, y = count, colour = exposure)) +
geom_line() +
scale_colour_manual(values = exposure_colors) +
xlab('Registration Date') + ylab('senseBox count')
## ----exposure_summary---------------------------------------------------------
exposure_counts %>%
summarise(
oldest = min(locationtimestamp),
newest = max(locationtimestamp),
count = max(count)
) %>%
arrange(desc(count))
## ----grouptag_counts, message=FALSE-------------------------------------------
grouptag_counts = boxes %>%
group_by(grouptag) %>%
# only include grouptags with 15 or more members
filter(length(grouptag) >= 15 & !is.na(grouptag) & grouptag != '') %>%
mutate(count = row_number(locationtimestamp))
# helper for sorting the grouptags by boxcount
sortLvls = function(oldFactor, ascending = TRUE) {
lvls = table(oldFactor) %>% sort(., decreasing = !ascending) %>% names()
factor(oldFactor, levels = lvls)
}
grouptag_counts$grouptag = sortLvls(grouptag_counts$grouptag, ascending = FALSE)
ggplot(grouptag_counts, aes(x = locationtimestamp, y = count, colour = grouptag)) +
geom_line(aes(group = grouptag)) +
xlab('Registration Date') + ylab('senseBox count')
## ----grouptag_summary---------------------------------------------------------
grouptag_counts %>%
summarise(
oldest = min(locationtimestamp),
newest = max(locationtimestamp),
count = max(count)
) %>%
arrange(desc(count))
## ----growthrate_registered, warning=FALSE, message=FALSE, results='hide'------
bins = 'week'
mvavg_bins = 6
growth = boxes %>%
mutate(week = cut(as.Date(locationtimestamp), breaks = bins)) %>%
group_by(week) %>%
summarize(count = length(week)) %>%
mutate(event = 'registered')
## ----growthrate_inactive, warning=FALSE, message=FALSE, results='hide'--------
inactive = boxes %>%
# remove boxes that were updated in the last two days,
# b/c any box becomes inactive at some point by definition of updatedAt
filter(lastMeasurement < now() - days(2)) %>%
mutate(week = cut(as.Date(lastMeasurement), breaks = bins)) %>%
filter(as.Date(week) > as.Date("2021-12-31")) %>%
group_by(week) %>%
summarize(count = length(week)) %>%
mutate(event = 'inactive')
## ----growthrate, warning=FALSE, message=FALSE, results='hide'-----------------
boxes_by_date = bind_rows(growth, inactive) %>% group_by(event)
ggplot(boxes_by_date, aes(x = as.Date(week), colour = event)) +
xlab('Time') + ylab(paste('rate per ', bins)) +
scale_x_date(date_breaks="years", date_labels="%Y") +
scale_colour_manual(values = c(registered = 'lightgreen', inactive = 'grey')) +
geom_point(aes(y = count), size = 0.5) +
# moving average, make first and last value NA (to ensure identical length of vectors)
geom_line(aes(y = rollmean(count, mvavg_bins, fill = list(NA, NULL, NA))))
## ----table_mostregistrations--------------------------------------------------
boxes_by_date %>%
filter(count > 50) %>%
arrange(desc(count))
## ----exposure_duration, message=FALSE-----------------------------------------
durations = boxes %>%
group_by(exposure) %>%
filter(!is.na(lastMeasurement)) %>%
mutate(duration = difftime(lastMeasurement, locationtimestamp, units='days')) %>%
filter(duration >= 0)
ggplot(durations, aes(x = exposure, y = duration)) +
geom_boxplot() +
coord_flip() + ylab('Duration active in Days')
## ----grouptag_duration, message=FALSE-----------------------------------------
durations = boxes %>%
filter(!is.na(lastMeasurement)) %>%
group_by(grouptag) %>%
# only include grouptags with 20 or more members
filter(length(grouptag) >= 15 & !is.na(grouptag) & !is.na(lastMeasurement)) %>%
mutate(duration = difftime(lastMeasurement, locationtimestamp, units='days')) %>%
filter(duration >= 0)
ggplot(durations, aes(x = grouptag, y = duration)) +
geom_boxplot() +
coord_flip() + ylab('Duration active in Days')
durations %>%
summarize(
duration_avg = round(mean(duration)),
duration_min = round(min(duration)),
duration_max = round(max(duration)),
oldest_box = round(max(difftime(now(), locationtimestamp, units='days')))
) %>%
arrange(desc(duration_avg))
## ----year_duration, message=FALSE---------------------------------------------
# NOTE: boxes older than 2016 missing due to missing updatedAt in database
duration = boxes %>%
mutate(year = cut(as.Date(locationtimestamp), breaks = 'year')) %>%
group_by(year) %>%
filter(!is.na(lastMeasurement)) %>%
mutate(duration = difftime(lastMeasurement, locationtimestamp, units='days')) %>%
filter(duration >= 0)
ggplot(duration, aes(x = substr(as.character(year), 0, 4), y = duration)) +
geom_boxplot() +
coord_flip() + ylab('Duration active in Days') + xlab('Year of Registration')

@ -0,0 +1,300 @@
---
title: "Visualising the Development of openSenseMap.org in 2022"
author: "Jan Stenkamp"
date: '`r Sys.Date()`'
output:
html_document:
code_folding: hide
df_print: kable
theme: lumen
toc: yes
toc_float: yes
rmarkdown::html_vignette:
df_print: kable
fig_height: 5
fig_width: 7
toc: yes
vignette: >
%\VignetteIndexEntry{Visualising the Development of openSenseMap.org in 2022}
%\VignetteEncoding{UTF-8}
%\VignetteEngine{knitr::rmarkdown}
---
> This vignette serves as an example on data wrangling & visualization with
`opensensmapr`, `dplyr` and `ggplot2`.
```{r setup, results='hide', message=FALSE, warning=FALSE}
# required packages:
library(opensensmapr) # data download
library(dplyr) # data wrangling
library(ggplot2) # plotting
library(lubridate) # date arithmetic
library(zoo) # rollmean()
```
openSenseMap.org has grown quite a bit in the last years; it would be interesting
to see how we got to the current `r osem_counts()$boxes` sensor stations,
split up by various attributes of the boxes.
While `opensensmapr` provides extensive methods of filtering boxes by attributes
on the server, we do the filtering within R to save time and gain flexibility.
So the first step is to retrieve *all the boxes*.
```{r download, results='hide', message=FALSE, warning=FALSE}
# if you want to see results for a specific subset of boxes,
# just specify a filter such as grouptag='ifgi' here
boxes_all = osem_boxes()
boxes = boxes_all
```
# Introduction
In the following we just want to have a look at the boxes created in 2022, so we filter for them.
```{r}
boxes = filter(boxes, locationtimestamp >= "2022-01-01" & locationtimestamp <="2022-12-31")
summary(boxes) -> summary.data.frame
```
<!-- This gives a good overview already: As of writing this, there are more than 11,000 -->
<!-- sensor stations, of which ~30% are currently running. Most of them are placed -->
<!-- outdoors and have around 5 sensors each. -->
<!-- The oldest station is from August 2016, while the latest station was registered a -->
<!-- couple of minutes ago. -->
Another feature of interest is the spatial distribution of the boxes: `plot()`
can help us out here. This function requires a bunch of optional dependencies though.
```{r message=F, warning=F}
if (!require('maps')) install.packages('maps')
if (!require('maptools')) install.packages('maptools')
if (!require('rgeos')) install.packages('rgeos')
plot(boxes)
```
But what do these sensor stations actually measure? Lets find out.
`osem_phenomena()` gives us a named list of of the counts of each observed
phenomenon for the given set of sensor stations:
```{r}
phenoms = osem_phenomena(boxes)
str(phenoms)
```
Thats quite some noise there, with many phenomena being measured by a single
sensor only, or many duplicated phenomena due to slightly different spellings.
We should clean that up, but for now let's just filter out the noise and find
those phenomena with high sensor numbers:
```{r}
phenoms[phenoms > 50]
```
# Plot count of boxes by time {.tabset}
By looking at the `createdAt` attribute of each box we know the exact time a box
was registered. Because of some database migration issues the `createdAt` values are mostly wrong (~80% of boxes created 2022-03-30), so we are using the `timestamp` attribute of the `currentlocation` which should in most cases correspond to the creation date.
With this approach we have no information about boxes that were deleted in the
meantime, but that's okay for now.
## ...and exposure
```{r exposure_counts, message=FALSE}
exposure_counts = boxes %>%
group_by(exposure) %>%
mutate(count = row_number(locationtimestamp))
exposure_colors = c(indoor = 'red', outdoor = 'lightgreen', mobile = 'blue', unknown = 'darkgrey')
ggplot(exposure_counts, aes(x = locationtimestamp, y = count, colour = exposure)) +
geom_line() +
scale_colour_manual(values = exposure_colors) +
xlab('Registration Date') + ylab('senseBox count')
```
Outdoor boxes are growing *fast*!
We can also see the introduction of `mobile` sensor "stations" in 2017.
Let's have a quick summary:
```{r exposure_summary}
exposure_counts %>%
summarise(
oldest = min(locationtimestamp),
newest = max(locationtimestamp),
count = max(count)
) %>%
arrange(desc(count))
```
## ...and grouptag
We can try to find out where the increases in growth came from, by analysing the
box count by grouptag.
Caveats: Only a small subset of boxes has a grouptag, and we should assume
that these groups are actually bigger. Also, we can see that grouptag naming is
inconsistent (`Luftdaten`, `luftdaten.info`, ...)
```{r grouptag_counts, message=FALSE}
grouptag_counts = boxes %>%
group_by(grouptag) %>%
# only include grouptags with 15 or more members
filter(length(grouptag) >= 15 & !is.na(grouptag) & grouptag != '') %>%
mutate(count = row_number(locationtimestamp))
# helper for sorting the grouptags by boxcount
sortLvls = function(oldFactor, ascending = TRUE) {
lvls = table(oldFactor) %>% sort(., decreasing = !ascending) %>% names()
factor(oldFactor, levels = lvls)
}
grouptag_counts$grouptag = sortLvls(grouptag_counts$grouptag, ascending = FALSE)
ggplot(grouptag_counts, aes(x = locationtimestamp, y = count, colour = grouptag)) +
geom_line(aes(group = grouptag)) +
xlab('Registration Date') + ylab('senseBox count')
```
```{r grouptag_summary}
grouptag_counts %>%
summarise(
oldest = min(locationtimestamp),
newest = max(locationtimestamp),
count = max(count)
) %>%
arrange(desc(count))
```
# Plot rate of growth and inactivity per week
First we group the boxes by `locationtimestamp` into bins of one week:
```{r growthrate_registered, warning=FALSE, message=FALSE, results='hide'}
bins = 'week'
mvavg_bins = 6
growth = boxes %>%
mutate(week = cut(as.Date(locationtimestamp), breaks = bins)) %>%
group_by(week) %>%
summarize(count = length(week)) %>%
mutate(event = 'registered')
```
We can do the same for `updatedAt`, which informs us about the last change to
a box, including uploaded measurements. As a lot of boxes were "updated" by the database
migration, many of them are updated at 2022-03-30, so we try to use the `lastMeasurement`
attribute instead of `updatedAt`. This leads to fewer boxes but also automatically excludes
boxes which were created but never made a measurement.
This method of determining inactive boxes is fairly inaccurate and should be
considered an approximation, because we have no information about intermediate
inactive phases.
Also deleted boxes would probably have a big impact here.
```{r growthrate_inactive, warning=FALSE, message=FALSE, results='hide'}
inactive = boxes %>%
# remove boxes that were updated in the last two days,
# b/c any box becomes inactive at some point by definition of updatedAt
filter(lastMeasurement < now() - days(2)) %>%
mutate(week = cut(as.Date(lastMeasurement), breaks = bins)) %>%
filter(as.Date(week) > as.Date("2021-12-31")) %>%
group_by(week) %>%
summarize(count = length(week)) %>%
mutate(event = 'inactive')
```
Now we can combine both datasets for plotting:
```{r growthrate, warning=FALSE, message=FALSE, results='hide'}
boxes_by_date = bind_rows(growth, inactive) %>% group_by(event)
ggplot(boxes_by_date, aes(x = as.Date(week), colour = event)) +
xlab('Time') + ylab(paste('rate per ', bins)) +
scale_x_date(date_breaks="years", date_labels="%Y") +
scale_colour_manual(values = c(registered = 'lightgreen', inactive = 'grey')) +
geom_point(aes(y = count), size = 0.5) +
# moving average, make first and last value NA (to ensure identical length of vectors)
geom_line(aes(y = rollmean(count, mvavg_bins, fill = list(NA, NULL, NA))))
```
And see in which weeks the most boxes become (in)active:
```{r table_mostregistrations}
boxes_by_date %>%
filter(count > 50) %>%
arrange(desc(count))
```
# Plot duration of boxes being active {.tabset}
While we are looking at `locationtimestamp` and `lastMeasurement`, we can also extract the duration of activity
of each box, and look at metrics by exposure and grouptag once more:
## ...by exposure
```{r exposure_duration, message=FALSE}
durations = boxes %>%
group_by(exposure) %>%
filter(!is.na(lastMeasurement)) %>%
mutate(duration = difftime(lastMeasurement, locationtimestamp, units='days')) %>%
filter(duration >= 0)
ggplot(durations, aes(x = exposure, y = duration)) +
geom_boxplot() +
coord_flip() + ylab('Duration active in Days')
```
The time of activity averages at only `r round(mean(durations$duration))` days,
though there are boxes with `r round(max(durations$duration))` days of activity,
spanning a large chunk of openSenseMap's existence.
## ...by grouptag
```{r grouptag_duration, message=FALSE}
durations = boxes %>%
filter(!is.na(lastMeasurement)) %>%
group_by(grouptag) %>%
# only include grouptags with 20 or more members
filter(length(grouptag) >= 15 & !is.na(grouptag) & !is.na(lastMeasurement)) %>%
mutate(duration = difftime(lastMeasurement, locationtimestamp, units='days')) %>%
filter(duration >= 0)
ggplot(durations, aes(x = grouptag, y = duration)) +
geom_boxplot() +
coord_flip() + ylab('Duration active in Days')
durations %>%
summarize(
duration_avg = round(mean(duration)),
duration_min = round(min(duration)),
duration_max = round(max(duration)),
oldest_box = round(max(difftime(now(), locationtimestamp, units='days')))
) %>%
arrange(desc(duration_avg))
```
The time of activity averages at only `r round(mean(durations$duration))` days,
though there are boxes with `r round(max(durations$duration))` days of activity,
spanning a large chunk of openSenseMap's existence.
## ...by year of registration
This is less useful, as older boxes are active for a longer time by definition.
If you have an idea how to compensate for that, please send a [Pull Request][PR]!
```{r year_duration, message=FALSE}
# NOTE: boxes older than 2016 missing due to missing updatedAt in database
duration = boxes %>%
mutate(year = cut(as.Date(locationtimestamp), breaks = 'year')) %>%
group_by(year) %>%
filter(!is.na(lastMeasurement)) %>%
mutate(duration = difftime(lastMeasurement, locationtimestamp, units='days')) %>%
filter(duration >= 0)
ggplot(duration, aes(x = substr(as.character(year), 0, 4), y = duration)) +
geom_boxplot() +
coord_flip() + ylab('Duration active in Days') + xlab('Year of Registration')
```
# More Visualisations
Other visualisations come to mind, and are left as an exercise to the reader.
If you implemented some, feel free to add them to this vignette via a [Pull Request][PR].
* growth by phenomenon
* growth by location -> (interactive) map
* set inactive rate in relation to total box count
* filter timespans with big dips in growth rate, and extrapolate the amount of
senseBoxes that could be on the platform today, assuming there were no production issues ;)
[PR]: https://github.com/sensebox/opensensmapr/pulls

File diff suppressed because one or more lines are too long

@ -0,0 +1,73 @@
## ----setup, include=FALSE-----------------------------------------------------
knitr::opts_chunk$set(echo = TRUE)
## ----results = F--------------------------------------------------------------
library(magrittr)
library(opensensmapr)
all_sensors = osem_boxes()
## -----------------------------------------------------------------------------
summary(all_sensors)
## ----message=F, warning=F-----------------------------------------------------
if (!require('maps')) install.packages('maps')
if (!require('maptools')) install.packages('maptools')
if (!require('rgeos')) install.packages('rgeos')
plot(all_sensors)
## -----------------------------------------------------------------------------
phenoms = osem_phenomena(all_sensors)
str(phenoms)
## -----------------------------------------------------------------------------
phenoms[phenoms > 20]
## ----results = F--------------------------------------------------------------
pm25_sensors = osem_boxes(
exposure = 'outdoor',
date = Sys.time(), # ±4 hours
phenomenon = 'PM2.5'
)
## -----------------------------------------------------------------------------
summary(pm25_sensors)
plot(pm25_sensors)
## -----------------------------------------------------------------------------
library(sf)
library(units)
library(lubridate)
library(dplyr)
# construct a bounding box: 12 kilometers around Berlin
berlin = st_point(c(13.4034, 52.5120)) %>%
st_sfc(crs = 4326) %>%
st_transform(3857) %>% # allow setting a buffer in meters
st_buffer(set_units(12, km)) %>%
st_transform(4326) %>% # the opensensemap expects WGS 84
st_bbox()
## ----results = F--------------------------------------------------------------
pm25 = osem_measurements(
berlin,
phenomenon = 'PM2.5',
from = now() - days(3), # defaults to 2 days
to = now()
)
plot(pm25)
## -----------------------------------------------------------------------------
outliers = filter(pm25, value > 100)$sensorId
bad_sensors = outliers[, drop = T] %>% levels()
pm25 = mutate(pm25, invalid = sensorId %in% bad_sensors)
## -----------------------------------------------------------------------------
st_as_sf(pm25) %>% st_geometry() %>% plot(col = factor(pm25$invalid), axes = T)
## -----------------------------------------------------------------------------
pm25 %>% filter(invalid == FALSE) %>% plot()

@ -0,0 +1,151 @@
---
title: "Exploring the openSenseMap Dataset"
author: "Norwin Roosen"
date: "`r Sys.Date()`"
output:
rmarkdown::html_vignette:
fig_margin: 0
fig_width: 6
fig_height: 4
vignette: >
%\VignetteIndexEntry{Exploring the openSenseMap Dataset}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
This package provides data ingestion functions for almost any data stored on the
open data platform for environmental sensordata <https://opensensemap.org>.
Its main goals are to provide means for:
- big data analysis of the measurements stored on the platform
- sensor metadata analysis (sensor counts, spatial distribution, temporal trends)
### Exploring the dataset
Before we look at actual observations, lets get a grasp of the openSenseMap
datasets' structure.
```{r results = F}
library(magrittr)
library(opensensmapr)
all_sensors = osem_boxes()
```
```{r}
summary(all_sensors)
```
This gives a good overview already: As of writing this, there are more than 700
sensor stations, of which ~50% are currently running. Most of them are placed
outdoors and have around 5 sensors each.
The oldest station is from May 2014, while the latest station was registered a
couple of minutes ago.
Another feature of interest is the spatial distribution of the boxes: `plot()`
can help us out here. This function requires a bunch of optional dependencies though.
```{r message=F, warning=F}
if (!require('maps')) install.packages('maps')
if (!require('maptools')) install.packages('maptools')
if (!require('rgeos')) install.packages('rgeos')
plot(all_sensors)
```
It seems we have to reduce our area of interest to Germany.
But what do these sensor stations actually measure? Lets find out.
`osem_phenomena()` gives us a named list of of the counts of each observed
phenomenon for the given set of sensor stations:
```{r}
phenoms = osem_phenomena(all_sensors)
str(phenoms)
```
Thats quite some noise there, with many phenomena being measured by a single
sensor only, or many duplicated phenomena due to slightly different spellings.
We should clean that up, but for now let's just filter out the noise and find
those phenomena with high sensor numbers:
```{r}
phenoms[phenoms > 20]
```
Alright, temperature it is! Fine particulate matter (PM2.5) seems to be more
interesting to analyze though.
We should check how many sensor stations provide useful data: We want only those
boxes with a PM2.5 sensor, that are placed outdoors and are currently submitting
measurements:
```{r results = F}
pm25_sensors = osem_boxes(
exposure = 'outdoor',
date = Sys.time(), # ±4 hours
phenomenon = 'PM2.5'
)
```
```{r}
summary(pm25_sensors)
plot(pm25_sensors)
```
Thats still more than 200 measuring stations, we can work with that.
### Analyzing sensor data
Having analyzed the available data sources, let's finally get some measurements.
We could call `osem_measurements(pm25_sensors)` now, however we are focusing on
a restricted area of interest, the city of Berlin.
Luckily we can get the measurements filtered by a bounding box:
```{r}
library(sf)
library(units)
library(lubridate)
library(dplyr)
# construct a bounding box: 12 kilometers around Berlin
berlin = st_point(c(13.4034, 52.5120)) %>%
st_sfc(crs = 4326) %>%
st_transform(3857) %>% # allow setting a buffer in meters
st_buffer(set_units(12, km)) %>%
st_transform(4326) %>% # the opensensemap expects WGS 84
st_bbox()
```
```{r results = F}
pm25 = osem_measurements(
berlin,
phenomenon = 'PM2.5',
from = now() - days(3), # defaults to 2 days
to = now()
)
plot(pm25)
```
Now we can get started with actual spatiotemporal data analysis.
First, lets mask the seemingly uncalibrated sensors:
```{r}
outliers = filter(pm25, value > 100)$sensorId
bad_sensors = outliers[, drop = T] %>% levels()
pm25 = mutate(pm25, invalid = sensorId %in% bad_sensors)
```
Then plot the measuring locations, flagging the outliers:
```{r}
st_as_sf(pm25) %>% st_geometry() %>% plot(col = factor(pm25$invalid), axes = T)
```
Removing these sensors yields a nicer time series plot:
```{r}
pm25 %>% filter(invalid == FALSE) %>% plot()
```
Further analysis: comparison with LANUV data `TODO`

File diff suppressed because one or more lines are too long

@ -0,0 +1,51 @@
## ----setup, results='hide'----------------------------------------------------
# this vignette requires:
library(opensensmapr)
library(jsonlite)
library(readr)
## ----cache--------------------------------------------------------------------
b = osem_boxes(grouptag = 'ifgi', cache = tempdir())
# the next identical request will hit the cache only!
b = osem_boxes(grouptag = 'ifgi', cache = tempdir())
# requests without the cache parameter will still be performed normally
b = osem_boxes(grouptag = 'ifgi')
## ----cachelisting-------------------------------------------------------------
list.files(tempdir(), pattern = 'osemcache\\..*\\.rds')
## ----cache_custom-------------------------------------------------------------
cacheDir = getwd() # current working directory
b = osem_boxes(grouptag = 'ifgi', cache = cacheDir)
# the next identical request will hit the cache only!
b = osem_boxes(grouptag = 'ifgi', cache = cacheDir)
## ----clearcache, results='hide'-----------------------------------------------
osem_clear_cache() # clears default cache
osem_clear_cache(getwd()) # clears a custom cache
## ----data, results='hide'-----------------------------------------------------
# first get our example data:
measurements = osem_measurements('Windgeschwindigkeit')
## ----serialize_json-----------------------------------------------------------
# serializing senseBoxes to JSON, and loading from file again:
write(jsonlite::serializeJSON(measurements), 'measurements.json')
measurements_from_file = jsonlite::unserializeJSON(readr::read_file('measurements.json'))
class(measurements_from_file)
## ----serialize_attrs----------------------------------------------------------
# note the toJSON call instead of serializeJSON
write(jsonlite::toJSON(measurements), 'measurements_bad.json')
measurements_without_attrs = jsonlite::fromJSON('measurements_bad.json')
class(measurements_without_attrs)
measurements_with_attrs = osem_as_measurements(measurements_without_attrs)
class(measurements_with_attrs)
## ----cleanup, include=FALSE---------------------------------------------------
file.remove('measurements.json', 'measurements_bad.json')

@ -0,0 +1,106 @@
---
title: "Caching openSenseMap Data for Reproducibility"
author: "Norwin Roosen"
date: "`r Sys.Date()`"
output: rmarkdown::html_vignette
vignette: >
%\VignetteIndexEntry{Caching openSenseMap Data for Reproducibility}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
It may be useful to download data from openSenseMap only once.
For reproducible results, the data should be saved to disk, and reloaded at a
later point.
This avoids..
- changed results for queries without date parameters,
- unnecessary wait times,
- risk of API changes / API unavailability,
- stress on the openSenseMap-server.
This vignette shows how to use this built in `opensensmapr` feature, and
how to do it yourself in case you want to save to other data formats.
```{r setup, results='hide'}
# this vignette requires:
library(opensensmapr)
library(jsonlite)
library(readr)
```
## Using the opensensmapr Caching Feature
All data retrieval functions of `opensensmapr` have a built in caching feature,
which serializes an API response to disk.
Subsequent identical requests will then return the serialized data instead of making
another request.
To use this feature, just add a path to a directory to the `cache` parameter:
```{r cache}
b = osem_boxes(grouptag = 'ifgi', cache = tempdir())
# the next identical request will hit the cache only!
b = osem_boxes(grouptag = 'ifgi', cache = tempdir())
# requests without the cache parameter will still be performed normally
b = osem_boxes(grouptag = 'ifgi')
```
Looking at the cache directory we can see one file for each request, which is identified through a hash of the request URL:
```{r cachelisting}
list.files(tempdir(), pattern = 'osemcache\\..*\\.rds')
```
You can maintain multiple caches simultaneously which allows to only store data related to a script in the same directory:
```{r cache_custom}
cacheDir = getwd() # current working directory
b = osem_boxes(grouptag = 'ifgi', cache = cacheDir)
# the next identical request will hit the cache only!
b = osem_boxes(grouptag = 'ifgi', cache = cacheDir)
```
To get fresh results again, just call `osem_clear_cache()` for the respective cache:
```{r clearcache, results='hide'}
osem_clear_cache() # clears default cache
osem_clear_cache(getwd()) # clears a custom cache
```
## Custom (De-) Serialization
If you want to roll your own serialization method to support custom data formats,
here's how:
```{r data, results='hide'}
# first get our example data:
measurements = osem_measurements('Windgeschwindigkeit')
```
If you are paranoid and worry about `.rds` files not being decodable anymore
in the (distant) future, you could serialize to a plain text format such as JSON.
This of course comes at the cost of storage space and performance.
```{r serialize_json}
# serializing senseBoxes to JSON, and loading from file again:
write(jsonlite::serializeJSON(measurements), 'measurements.json')
measurements_from_file = jsonlite::unserializeJSON(readr::read_file('measurements.json'))
class(measurements_from_file)
```
This method also persists the R object metadata (classes, attributes).
If you were to use a serialization method that can't persist object metadata, you
could re-apply it with the following functions:
```{r serialize_attrs}
# note the toJSON call instead of serializeJSON
write(jsonlite::toJSON(measurements), 'measurements_bad.json')
measurements_without_attrs = jsonlite::fromJSON('measurements_bad.json')
class(measurements_without_attrs)
measurements_with_attrs = osem_as_measurements(measurements_without_attrs)
class(measurements_with_attrs)
```
The same goes for boxes via `osem_as_sensebox()`.
```{r cleanup, include=FALSE}
file.remove('measurements.json', 'measurements_bad.json')
```

@ -0,0 +1,444 @@
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta http-equiv="X-UA-Compatible" content="IE=EDGE" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="author" content="Norwin Roosen" />
<meta name="date" content="2023-02-23" />
<title>Caching openSenseMap Data for Reproducibility</title>
<script>// Pandoc 2.9 adds attributes on both header and div. We remove the former (to
// be compatible with the behavior of Pandoc < 2.8).
document.addEventListener('DOMContentLoaded', function(e) {
var hs = document.querySelectorAll("div.section[class*='level'] > :first-child");
var i, h, a;
for (i = 0; i < hs.length; i++) {
h = hs[i];
if (!/^h[1-6]$/i.test(h.tagName)) continue; // it should be a header h1-h6
a = h.attributes;
while (a.length > 0) h.removeAttribute(a[0].name);
}
});
</script>
<style type="text/css">
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
</style>
<style type="text/css">
code {
white-space: pre;
}
.sourceCode {
overflow: visible;
}
</style>
<style type="text/css" data-origin="pandoc">
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span.al { color: #ff0000; font-weight: bold; }
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; }
code span.at { color: #7d9029; }
code span.bn { color: #40a070; }
code span.bu { color: #008000; }
code span.cf { color: #007020; font-weight: bold; }
code span.ch { color: #4070a0; }
code span.cn { color: #880000; }
code span.co { color: #60a0b0; font-style: italic; }
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; }
code span.do { color: #ba2121; font-style: italic; }
code span.dt { color: #902000; }
code span.dv { color: #40a070; }
code span.er { color: #ff0000; font-weight: bold; }
code span.ex { }
code span.fl { color: #40a070; }
code span.fu { color: #06287e; }
code span.im { color: #008000; font-weight: bold; }
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; }
code span.kw { color: #007020; font-weight: bold; }
code span.op { color: #666666; }
code span.ot { color: #007020; }
code span.pp { color: #bc7a00; }
code span.sc { color: #4070a0; }
code span.ss { color: #bb6688; }
code span.st { color: #4070a0; }
code span.va { color: #19177c; }
code span.vs { color: #4070a0; }
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; }
</style>
<script>
// apply pandoc div.sourceCode style to pre.sourceCode instead
(function() {
var sheets = document.styleSheets;
for (var i = 0; i < sheets.length; i++) {
if (sheets[i].ownerNode.dataset["origin"] !== "pandoc") continue;
try { var rules = sheets[i].cssRules; } catch (e) { continue; }
var j = 0;
while (j < rules.length) {
var rule = rules[j];
// check if there is a div.sourceCode rule
if (rule.type !== rule.STYLE_RULE || rule.selectorText !== "div.sourceCode") {
j++;
continue;
}
var style = rule.style.cssText;
// check if color or background-color is set
if (rule.style.color === '' && rule.style.backgroundColor === '') {
j++;
continue;
}
// replace div.sourceCode by a pre.sourceCode rule
sheets[i].deleteRule(j);
sheets[i].insertRule('pre.sourceCode{' + style + '}', j);
}
}
})();
</script>
<style type="text/css">body {
background-color: #fff;
margin: 1em auto;
max-width: 700px;
overflow: visible;
padding-left: 2em;
padding-right: 2em;
font-family: "Open Sans", "Helvetica Neue", Helvetica, Arial, sans-serif;
font-size: 14px;
line-height: 1.35;
}
#TOC {
clear: both;
margin: 0 0 10px 10px;
padding: 4px;
width: 400px;
border: 1px solid #CCCCCC;
border-radius: 5px;
background-color: #f6f6f6;
font-size: 13px;
line-height: 1.3;
}
#TOC .toctitle {
font-weight: bold;
font-size: 15px;
margin-left: 5px;
}
#TOC ul {
padding-left: 40px;
margin-left: -1.5em;
margin-top: 5px;
margin-bottom: 5px;
}
#TOC ul ul {
margin-left: -2em;
}
#TOC li {
line-height: 16px;
}
table {
margin: 1em auto;
border-width: 1px;
border-color: #DDDDDD;
border-style: outset;
border-collapse: collapse;
}
table th {
border-width: 2px;
padding: 5px;
border-style: inset;
}
table td {
border-width: 1px;
border-style: inset;
line-height: 18px;
padding: 5px 5px;
}
table, table th, table td {
border-left-style: none;
border-right-style: none;
}
table thead, table tr.even {
background-color: #f7f7f7;
}
p {
margin: 0.5em 0;
}
blockquote {
background-color: #f6f6f6;
padding: 0.25em 0.75em;
}
hr {
border-style: solid;
border: none;
border-top: 1px solid #777;
margin: 28px 0;
}
dl {
margin-left: 0;
}
dl dd {
margin-bottom: 13px;
margin-left: 13px;
}
dl dt {
font-weight: bold;
}
ul {
margin-top: 0;
}
ul li {
list-style: circle outside;
}
ul ul {
margin-bottom: 0;
}
pre, code {
background-color: #f7f7f7;
border-radius: 3px;
color: #333;
white-space: pre-wrap;
}
pre {
border-radius: 3px;
margin: 5px 0px 10px 0px;
padding: 10px;
}
pre:not([class]) {
background-color: #f7f7f7;
}
code {
font-family: Consolas, Monaco, 'Courier New', monospace;
font-size: 85%;
}
p > code, li > code {
padding: 2px 0px;
}
div.figure {
text-align: center;
}
img {
background-color: #FFFFFF;
padding: 2px;
border: 1px solid #DDDDDD;
border-radius: 3px;
border: 1px solid #CCCCCC;
margin: 0 5px;
}
h1 {
margin-top: 0;
font-size: 35px;
line-height: 40px;
}
h2 {
border-bottom: 4px solid #f7f7f7;
padding-top: 10px;
padding-bottom: 2px;
font-size: 145%;
}
h3 {
border-bottom: 2px solid #f7f7f7;
padding-top: 10px;
font-size: 120%;
}
h4 {
border-bottom: 1px solid #f7f7f7;
margin-left: 8px;
font-size: 105%;
}
h5, h6 {
border-bottom: 1px solid #ccc;
font-size: 105%;
}
a {
color: #0033dd;
text-decoration: none;
}
a:hover {
color: #6666ff; }
a:visited {
color: #800080; }
a:visited:hover {
color: #BB00BB; }
a[href^="http:"] {
text-decoration: underline; }
a[href^="https:"] {
text-decoration: underline; }
code > span.kw { color: #555; font-weight: bold; }
code > span.dt { color: #902000; }
code > span.dv { color: #40a070; }
code > span.bn { color: #d14; }
code > span.fl { color: #d14; }
code > span.ch { color: #d14; }
code > span.st { color: #d14; }
code > span.co { color: #888888; font-style: italic; }
code > span.ot { color: #007020; }
code > span.al { color: #ff0000; font-weight: bold; }
code > span.fu { color: #900; font-weight: bold; }
code > span.er { color: #a61717; background-color: #e3d2d2; }
</style>
</head>
<body>
<h1 class="title toc-ignore">Caching openSenseMap Data for
Reproducibility</h1>
<h4 class="author">Norwin Roosen</h4>
<h4 class="date">2023-02-23</h4>
<p>It may be useful to download data from openSenseMap only once. For
reproducible results, the data should be saved to disk, and reloaded at
a later point.</p>
<p>This avoids..</p>
<ul>
<li>changed results for queries without date parameters,</li>
<li>unnecessary wait times,</li>
<li>risk of API changes / API unavailability,</li>
<li>stress on the openSenseMap-server.</li>
</ul>
<p>This vignette shows how to use this built in
<code>opensensmapr</code> feature, and how to do it yourself in case you
want to save to other data formats.</p>
<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="co"># this vignette requires:</span></span>
<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(opensensmapr)</span>
<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(jsonlite)</span>
<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(readr)</span></code></pre></div>
<div id="using-the-opensensmapr-caching-feature" class="section level2">
<h2>Using the opensensmapr Caching Feature</h2>
<p>All data retrieval functions of <code>opensensmapr</code> have a
built in caching feature, which serializes an API response to disk.
Subsequent identical requests will then return the serialized data
instead of making another request.</p>
<p>To use this feature, just add a path to a directory to the
<code>cache</code> parameter:</p>
<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a>b <span class="ot">=</span> <span class="fu">osem_boxes</span>(<span class="at">grouptag =</span> <span class="st">&#39;ifgi&#39;</span>, <span class="at">cache =</span> <span class="fu">tempdir</span>())</span>
<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a><span class="co"># the next identical request will hit the cache only!</span></span>
<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a>b <span class="ot">=</span> <span class="fu">osem_boxes</span>(<span class="at">grouptag =</span> <span class="st">&#39;ifgi&#39;</span>, <span class="at">cache =</span> <span class="fu">tempdir</span>())</span>
<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a><span class="co"># requests without the cache parameter will still be performed normally</span></span>
<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a>b <span class="ot">=</span> <span class="fu">osem_boxes</span>(<span class="at">grouptag =</span> <span class="st">&#39;ifgi&#39;</span>)</span></code></pre></div>
<p>Looking at the cache directory we can see one file for each request,
which is identified through a hash of the request URL:</p>
<div class="sourceCode" id="cb3"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="fu">list.files</span>(<span class="fu">tempdir</span>(), <span class="at">pattern =</span> <span class="st">&#39;osemcache</span><span class="sc">\\</span><span class="st">..*</span><span class="sc">\\</span><span class="st">.rds&#39;</span>)</span></code></pre></div>
<pre><code>## [1] &quot;osemcache.17db5c57fc6fca4d836fa2cf30345ce8767cd61a.rds&quot;</code></pre>
<p>You can maintain multiple caches simultaneously which allows to only
store data related to a script in the same directory:</p>
<div class="sourceCode" id="cb5"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a>cacheDir <span class="ot">=</span> <span class="fu">getwd</span>() <span class="co"># current working directory</span></span>
<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a>b <span class="ot">=</span> <span class="fu">osem_boxes</span>(<span class="at">grouptag =</span> <span class="st">&#39;ifgi&#39;</span>, <span class="at">cache =</span> cacheDir)</span>
<span id="cb5-3"><a href="#cb5-3" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb5-4"><a href="#cb5-4" aria-hidden="true" tabindex="-1"></a><span class="co"># the next identical request will hit the cache only!</span></span>
<span id="cb5-5"><a href="#cb5-5" aria-hidden="true" tabindex="-1"></a>b <span class="ot">=</span> <span class="fu">osem_boxes</span>(<span class="at">grouptag =</span> <span class="st">&#39;ifgi&#39;</span>, <span class="at">cache =</span> cacheDir)</span></code></pre></div>
<p>To get fresh results again, just call <code>osem_clear_cache()</code>
for the respective cache:</p>
<div class="sourceCode" id="cb6"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a><span class="fu">osem_clear_cache</span>() <span class="co"># clears default cache</span></span>
<span id="cb6-2"><a href="#cb6-2" aria-hidden="true" tabindex="-1"></a><span class="fu">osem_clear_cache</span>(<span class="fu">getwd</span>()) <span class="co"># clears a custom cache</span></span></code></pre></div>
</div>
<div id="custom-de--serialization" class="section level2">
<h2>Custom (De-) Serialization</h2>
<p>If you want to roll your own serialization method to support custom
data formats, heres how:</p>
<div class="sourceCode" id="cb7"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a><span class="co"># first get our example data:</span></span>
<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a>measurements <span class="ot">=</span> <span class="fu">osem_measurements</span>(<span class="st">&#39;Windgeschwindigkeit&#39;</span>)</span></code></pre></div>
<p>If you are paranoid and worry about <code>.rds</code> files not being
decodable anymore in the (distant) future, you could serialize to a
plain text format such as JSON. This of course comes at the cost of
storage space and performance.</p>
<div class="sourceCode" id="cb8"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a><span class="co"># serializing senseBoxes to JSON, and loading from file again:</span></span>
<span id="cb8-2"><a href="#cb8-2" aria-hidden="true" tabindex="-1"></a><span class="fu">write</span>(jsonlite<span class="sc">::</span><span class="fu">serializeJSON</span>(measurements), <span class="st">&#39;measurements.json&#39;</span>)</span>
<span id="cb8-3"><a href="#cb8-3" aria-hidden="true" tabindex="-1"></a>measurements_from_file <span class="ot">=</span> jsonlite<span class="sc">::</span><span class="fu">unserializeJSON</span>(readr<span class="sc">::</span><span class="fu">read_file</span>(<span class="st">&#39;measurements.json&#39;</span>))</span>
<span id="cb8-4"><a href="#cb8-4" aria-hidden="true" tabindex="-1"></a><span class="fu">class</span>(measurements_from_file)</span></code></pre></div>
<pre><code>## [1] &quot;osem_measurements&quot; &quot;tbl_df&quot; &quot;tbl&quot;
## [4] &quot;data.frame&quot;</code></pre>
<p>This method also persists the R object metadata (classes,
attributes). If you were to use a serialization method that cant
persist object metadata, you could re-apply it with the following
functions:</p>
<div class="sourceCode" id="cb10"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a><span class="co"># note the toJSON call instead of serializeJSON</span></span>
<span id="cb10-2"><a href="#cb10-2" aria-hidden="true" tabindex="-1"></a><span class="fu">write</span>(jsonlite<span class="sc">::</span><span class="fu">toJSON</span>(measurements), <span class="st">&#39;measurements_bad.json&#39;</span>)</span>
<span id="cb10-3"><a href="#cb10-3" aria-hidden="true" tabindex="-1"></a>measurements_without_attrs <span class="ot">=</span> jsonlite<span class="sc">::</span><span class="fu">fromJSON</span>(<span class="st">&#39;measurements_bad.json&#39;</span>)</span>
<span id="cb10-4"><a href="#cb10-4" aria-hidden="true" tabindex="-1"></a><span class="fu">class</span>(measurements_without_attrs)</span></code></pre></div>
<pre><code>## [1] &quot;data.frame&quot;</code></pre>
<div class="sourceCode" id="cb12"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1" aria-hidden="true" tabindex="-1"></a>measurements_with_attrs <span class="ot">=</span> <span class="fu">osem_as_measurements</span>(measurements_without_attrs)</span>
<span id="cb12-2"><a href="#cb12-2" aria-hidden="true" tabindex="-1"></a><span class="fu">class</span>(measurements_with_attrs)</span></code></pre></div>
<pre><code>## [1] &quot;osem_measurements&quot; &quot;tbl_df&quot; &quot;tbl&quot;
## [4] &quot;data.frame&quot;</code></pre>
<p>The same goes for boxes via <code>osem_as_sensebox()</code>.</p>
</div>
<!-- code folding -->
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
script.src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>
Loading…
Cancel
Save