You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
opensensmapR/inst/doc/osem-intro.R

74 lines
2.3 KiB
R

2 years ago
## ----setup, include=FALSE-----------------------------------------------------
knitr::opts_chunk$set(echo = TRUE)
## ----results = F--------------------------------------------------------------
library(magrittr)
library(opensensmapr)
all_sensors = osem_boxes()
## -----------------------------------------------------------------------------
summary(all_sensors)
## ----message=F, warning=F-----------------------------------------------------
if (!require('maps')) install.packages('maps')
if (!require('maptools')) install.packages('maptools')
if (!require('rgeos')) install.packages('rgeos')
plot(all_sensors)
## -----------------------------------------------------------------------------
phenoms = osem_phenomena(all_sensors)
str(phenoms)
## -----------------------------------------------------------------------------
phenoms[phenoms > 20]
## ----results = F--------------------------------------------------------------
pm25_sensors = osem_boxes(
exposure = 'outdoor',
date = Sys.time(), # ±4 hours
phenomenon = 'PM2.5'
)
## -----------------------------------------------------------------------------
summary(pm25_sensors)
plot(pm25_sensors)
## -----------------------------------------------------------------------------
library(sf)
library(units)
library(lubridate)
library(dplyr)
# construct a bounding box: 12 kilometers around Berlin
berlin = st_point(c(13.4034, 52.5120)) %>%
st_sfc(crs = 4326) %>%
st_transform(3857) %>% # allow setting a buffer in meters
st_buffer(set_units(12, km)) %>%
st_transform(4326) %>% # the opensensemap expects WGS 84
st_bbox()
## ----results = F--------------------------------------------------------------
pm25 = osem_measurements(
berlin,
phenomenon = 'PM2.5',
from = now() - days(3), # defaults to 2 days
to = now()
)
plot(pm25)
## -----------------------------------------------------------------------------
outliers = filter(pm25, value > 100)$sensorId
bad_sensors = outliers[, drop = T] %>% levels()
pm25 = mutate(pm25, invalid = sensorId %in% bad_sensors)
## -----------------------------------------------------------------------------
st_as_sf(pm25) %>% st_geometry() %>% plot(col = factor(pm25$invalid), axes = T)
## -----------------------------------------------------------------------------
pm25 %>% filter(invalid == FALSE) %>% plot()