You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

179 lines
5.2 KiB
C++

/*
* This program illustrates raw write functions in SdFat that
* can be used for high speed data logging.
*
* This program simulates logging from a source that produces
* data at a constant rate of RATE_KB_PER_SEC.
*
* Note: Apps should create a very large file then truncates it
* to the length that is used for a logging. It only takes
* a few seconds to erase a 500 MB file since the card only
* marks the blocks as erased; no data transfer is required.
*/
#include <SPI.h>
#include "SdFat.h"
#include "FreeStack.h"
// SD chip select pin
const uint8_t chipSelect = SS;
const uint32_t RATE_KB_PER_SEC = 100;
const uint32_t TEST_TIME_SEC = 100;
// Time between printing progress dots
const uint32_t DOT_TIME_MS = 5000UL;
// number of blocks in the contiguous file
const uint32_t BLOCK_COUNT = (1000*RATE_KB_PER_SEC*TEST_TIME_SEC + 511)/512;
// file system
SdFat sd;
// test file
SdFile file;
// file extent
uint32_t bgnBlock, endBlock;
// Serial output stream
ArduinoOutStream cout(Serial);
//------------------------------------------------------------------------------
// store error strings in flash to save RAM
#define error(s) sd.errorHalt(F(s))
//------------------------------------------------------------------------------
void setup(void) {
Serial.begin(9600);
// Wait for USB Serial
while (!Serial) {
SysCall::yield();
}
}
//------------------------------------------------------------------------------
void loop(void) {
// Read any extra Serial data.
do {
delay(10);
} while (Serial.available() && Serial.read() >= 0);
// F stores strings in flash to save RAM
cout << F("Type any character to start\n");
while (!Serial.available()) {
SysCall::yield();
}
cout << F("FreeStack: ") << FreeStack() << endl;
// Initialize at the highest speed supported by the board that is
// not over 50 MHz. Try a lower speed if SPI errors occur.
if (!sd.begin(chipSelect, SD_SCK_MHZ(50))) {
sd.initErrorHalt();
}
// delete possible existing file
sd.remove("RawWrite.txt");
// create a contiguous file
if (!file.createContiguous("RawWrite.txt", 512UL*BLOCK_COUNT)) {
error("createContiguous failed");
}
// get the location of the file's blocks
if (!file.contiguousRange(&bgnBlock, &endBlock)) {
error("contiguousRange failed");
}
//*********************NOTE**************************************
// NO SdFile calls are allowed while cache is used for raw writes
//***************************************************************
// clear the cache and use it as a 512 byte buffer
uint8_t* pCache = (uint8_t*)sd.vol()->cacheClear();
// fill cache with eight lines of 64 bytes each
memset(pCache, ' ', 512);
for (uint16_t i = 0; i < 512; i += 64) {
// put line number at end of line then CR/LF
pCache[i + 61] = '0' + (i/64);
pCache[i + 62] = '\r';
pCache[i + 63] = '\n';
}
cout << F("Start raw write of ") << file.fileSize()/1000UL << F(" KB\n");
cout << F("Target rate: ") << RATE_KB_PER_SEC << F(" KB/sec\n");
cout << F("Target time: ") << TEST_TIME_SEC << F(" seconds\n");
// tell card to setup for multiple block write with pre-erase
if (!sd.card()->writeStart(bgnBlock, BLOCK_COUNT)) {
error("writeStart failed");
}
// init stats
delay(1000);
uint32_t dotCount = 0;
uint32_t maxQueuePrint = 0;
uint32_t maxWriteTime = 0;
uint32_t minWriteTime = 9999999;
uint32_t totalWriteTime = 0;
uint32_t maxQueueSize = 0;
uint32_t nWrite = 0;
uint32_t b = 0;
// write data
uint32_t startTime = millis();
while (nWrite < BLOCK_COUNT) {
uint32_t nProduced = RATE_KB_PER_SEC*(millis() - startTime)/512UL;
uint32_t queueSize = nProduced - nWrite;
if (queueSize == 0) continue;
if (queueSize > maxQueueSize) {
maxQueueSize = queueSize;
}
if ((millis() - startTime - dotCount*DOT_TIME_MS) > DOT_TIME_MS) {
if (maxQueueSize != maxQueuePrint) {
cout << F("\nQ: ") << maxQueueSize << endl;
maxQueuePrint = maxQueueSize;
} else {
cout << ".";
if (++dotCount%10 == 0) {
cout << endl;
}
}
}
// put block number at start of first line in block
uint32_t n = b++;
for (int8_t d = 5; d >= 0; d--) {
pCache[d] = n || d == 5 ? n % 10 + '0' : ' ';
n /= 10;
}
// write a 512 byte block
uint32_t tw = micros();
if (!sd.card()->writeData(pCache)) {
error("writeData failed");
}
tw = micros() - tw;
totalWriteTime += tw;
// check for max write time
if (tw > maxWriteTime) {
maxWriteTime = tw;
}
if (tw < minWriteTime) {
minWriteTime = tw;
}
nWrite++;
}
uint32_t endTime = millis();
uint32_t avgWriteTime = totalWriteTime/BLOCK_COUNT;
// end multiple block write mode
if (!sd.card()->writeStop()) {
error("writeStop failed");
}
cout << F("\nDone\n");
cout << F("maxQueueSize: ") << maxQueueSize << endl;
cout << F("Elapsed time: ") << setprecision(3)<< 1.e-3*(endTime - startTime);
cout << F(" seconds\n");
cout << F("Min block write time: ") << minWriteTime << F(" micros\n");
cout << F("Max block write time: ") << maxWriteTime << F(" micros\n");
cout << F("Avg block write time: ") << avgWriteTime << F(" micros\n");
// close file for next pass of loop
file.close();
Serial.println();
}