mirror of
https://github.com/sensebox/opensensmapr
synced 2025-02-20 20:23:58 +01:00
lint
This commit is contained in:
parent
af7215fa86
commit
f5454c7292
8 changed files with 42 additions and 31 deletions
|
@ -15,7 +15,7 @@ Suggests:
|
|||
rmarkdown
|
||||
Author: Norwin Roosen
|
||||
Maintainer: Norwin Roosen <noerw@gmx.de>
|
||||
Description: This packages ingests data (measurements, sensorstations) from the
|
||||
Description: This package ingests data (measurements, sensorstations) from the
|
||||
API of opensensemap.org for analysis in R.
|
||||
The package aims to be compatible with sf and the tidyverse.
|
||||
License: GPL-2
|
||||
|
|
2
R/api.R
2
R/api.R
|
@ -4,8 +4,6 @@
|
|||
# for CSV responses (get_measurements) the readr package is a hidden dependency
|
||||
# ==============================================================================
|
||||
|
||||
# does not actually get called by the user. ... contains all the query parameters.
|
||||
# the proxy is just for parameter autocompletion, filtering out the endpoint
|
||||
get_boxes_ = function (..., endpoint) {
|
||||
response = httr::GET(endpoint, path = c('boxes'), query = list(...)) %>%
|
||||
httr::content() %>%
|
||||
|
|
22
R/box.R
22
R/box.R
|
@ -25,7 +25,15 @@
|
|||
#' @seealso \code{\link{osem_phenomena}}
|
||||
#' @export
|
||||
#' @examples
|
||||
#' # TODO
|
||||
#' # get *all* boxes available on the API
|
||||
#' b = osem_boxes()
|
||||
#'
|
||||
#' # get all boxes with grouptag 'ifgi' that are placed outdoors
|
||||
#' b = osem_boxes(grouptag = 'ifgi', exposure = 'outdoor')
|
||||
#'
|
||||
#' # get all boxes that have measured PM2.5 in the last 4 hours
|
||||
#' b = osem_boxes(date = Sys.time(), phenomenon = 'PM2.5')
|
||||
#'
|
||||
osem_boxes = function (exposure = NA, model = NA, grouptag = NA,
|
||||
date = NA, from = NA, to = NA, phenomenon = NA,
|
||||
endpoint = 'https://api.opensensemap.org') {
|
||||
|
@ -52,14 +60,10 @@ osem_boxes = function (exposure = NA, model = NA, grouptag = NA,
|
|||
if (!is.na(grouptag)) query$grouptag = grouptag
|
||||
if (!is.na(phenomenon)) query$phenomenon = phenomenon
|
||||
|
||||
if (!is.na(to) && !is.na(from)) {
|
||||
# error, if from is after to
|
||||
# convert dates to commaseparated UTC ISOdates
|
||||
if (!is.na(to) && !is.na(from))
|
||||
query$date = parse_dateparams(from, to) %>% paste(collapse = ',')
|
||||
|
||||
} else if (!is.na(date)) {
|
||||
else if (!is.na(date))
|
||||
query$date = utc_date(date) %>% date_as_isostring()
|
||||
}
|
||||
|
||||
do.call(get_boxes_, query)
|
||||
}
|
||||
|
@ -76,7 +80,9 @@ osem_boxes = function (exposure = NA, model = NA, grouptag = NA,
|
|||
#' @seealso \code{\link{osem_phenomena}}
|
||||
#' @export
|
||||
#' @examples
|
||||
#' # TODO
|
||||
#' # get a specific box by ID
|
||||
#' b = osem_box('593bcd656ccf3b0011791f5a')
|
||||
#'
|
||||
osem_box = function (boxId, endpoint = 'https://api.opensensemap.org') {
|
||||
get_box_(boxId, endpoint = endpoint)
|
||||
}
|
||||
|
|
|
@ -14,7 +14,7 @@ plot.sensebox = function (x, ...) {
|
|||
#' @export
|
||||
print.sensebox = function(x, ...) {
|
||||
important_columns = c('name', 'exposure', 'lastMeasurement', 'phenomena')
|
||||
data = as.data.frame(x) # to get rid of the sf::`<-[` override..
|
||||
data = as.data.frame(x)
|
||||
print(data[important_columns], ...)
|
||||
|
||||
invisible(x)
|
||||
|
@ -39,8 +39,7 @@ summary.sensebox = function(object, ...) {
|
|||
'365d' = nrow(object[diffNow <= 8760, ]) - neverActive,
|
||||
'never' = neverActive
|
||||
)
|
||||
) %>%
|
||||
print()
|
||||
) %>% print()
|
||||
|
||||
oldest = object[object$createdAt == min(object$createdAt), ]
|
||||
newest = object[object$createdAt == max(object$createdAt), ]
|
||||
|
|
|
@ -53,7 +53,7 @@ osem_measurements.default = function (x, ...) {
|
|||
#' bbox = structure(c(7, 51, 8, 52), class = 'bbox')
|
||||
#' osem_measurements(bbox, 'Temperatur')
|
||||
#'
|
||||
#' points = sf::st_multipoint(x = matrix(c(7,8,51,52),2,2))
|
||||
#' points = sf::st_multipoint(matrix(c(7, 8, 51, 52), 2, 2))
|
||||
#' bbox2 = sf::st_bbox(points)
|
||||
#' osem_measurements(bbox2, 'Temperatur', exposure = 'outdoor')
|
||||
#'
|
||||
|
@ -98,7 +98,10 @@ osem_measurements.sensebox = function (x, phenomenon, exposure = NA,
|
|||
parse_get_measurements_params = function (params) {
|
||||
if (is.null(params$phenomenon) | is.na(params$phenomenon))
|
||||
stop('Parameter "phenomenon" is required')
|
||||
if (!is.na(params$from) && is.na(params$to)) stop('specify "from" only together with "to"')
|
||||
|
||||
if (!is.na(params$from) && is.na(params$to))
|
||||
stop('specify "from" only together with "to"')
|
||||
|
||||
if (
|
||||
(!is.null(params$bbox) && !is.null(params$boxes)) ||
|
||||
(is.null(params$bbox) && is.null(params$boxes))
|
||||
|
@ -113,6 +116,7 @@ parse_get_measurements_params = function (params) {
|
|||
query$`from-date` = utc_date(params$from) %>% date_as_isostring()
|
||||
if (!is.na(params$to))
|
||||
query$`to-date` = utc_date(params$to) %>% date_as_isostring()
|
||||
|
||||
if (!is.na(params$exposure)) query$exposure = params$exposure
|
||||
if (!is.na(params$columns)) query$columns = paste(params$columns, collapse = ',')
|
||||
|
||||
|
|
|
@ -1,3 +1,5 @@
|
|||
# ==============================================================================
|
||||
#
|
||||
#' Convert a \code{sensebox} or \code{osem_measurements} dataframe to an
|
||||
#' \code{\link[sf]{st_sf}} object.
|
||||
#'
|
||||
|
@ -18,6 +20,7 @@ osem_remote_error = function (response) {
|
|||
invisible(response)
|
||||
}
|
||||
|
||||
# parses from/to params for get_measurements_ and get_boxes_
|
||||
parse_dateparams = function (from, to) {
|
||||
from = utc_date(from)
|
||||
to = utc_date(to)
|
||||
|
@ -35,4 +38,4 @@ utc_date = function (date) {
|
|||
}
|
||||
|
||||
# NOTE: cannot handle mixed vectors of POSIXlt and POSIXct
|
||||
date_as_isostring = function (date) format(date, format = '%FT%TZ')
|
||||
date_as_isostring = function (date) format.Date(date, format = '%FT%TZ')
|
||||
|
|
|
@ -16,7 +16,7 @@ knitr::opts_chunk$set(echo = TRUE)
|
|||
## Analyzing environmental sensor data from openSenseMap.org in R
|
||||
|
||||
This package provides data ingestion functions for almost any data stored on the
|
||||
open data platform <https://opensensemap.org>.
|
||||
open data platform for environemental sensordata <https://opensensemap.org>.
|
||||
Its main goals are to provide means for:
|
||||
|
||||
- big data analysis of the measurements stored on the platform
|
||||
|
@ -24,7 +24,7 @@ Its main goals are to provide means for:
|
|||
|
||||
> *Please note:* The openSenseMap API is sometimes a bit unstable when streaming
|
||||
long responses, which results in `curl` complaining about `Unexpected EOF`. This
|
||||
bug is beeing worked on upstream. Meanwhile you have to retry the request when
|
||||
bug is being worked on upstream. Meanwhile you have to retry the request when
|
||||
this occurs.
|
||||
|
||||
### Exploring the dataset
|
||||
|
@ -40,8 +40,8 @@ summary(all_sensors)
|
|||
```
|
||||
|
||||
This gives a good overview already: As of writing this, there are more than 600
|
||||
sensor stations, of which ~50% are running. Most of them are placed outdoors and
|
||||
have around 5 sensors each.
|
||||
sensor stations, of which ~50% are currently running. Most of them are placed
|
||||
outdoors and have around 5 sensors each.
|
||||
The oldest station is from May 2014, while the latest station was registered a
|
||||
couple of minutes ago.
|
||||
|
||||
|
@ -52,7 +52,7 @@ can help us out here:
|
|||
plot(all_sensors)
|
||||
```
|
||||
|
||||
Seems like we have to reduce our area of interest to Germany.
|
||||
It seems we have to reduce our area of interest to Germany.
|
||||
|
||||
But what do these sensor stations actually measure? Lets find out.
|
||||
`osem_phenomena()` gives us a named list of of the counts of each observed
|
||||
|
@ -66,14 +66,14 @@ str(phenoms)
|
|||
Thats quite some noise there, with many phenomena being measured by a single
|
||||
sensor only, or many duplicated phenomena due to slightly different spellings.
|
||||
We should clean that up, but for now let's just filter out the noise and find
|
||||
those phenomena with the high sensor numbers:
|
||||
those phenomena with high sensor numbers:
|
||||
|
||||
```{r}
|
||||
phenoms[phenoms > 20]
|
||||
```
|
||||
|
||||
Alright, temperature it is! PM2.5 seems to be more interesting to analyze though.
|
||||
|
||||
Alright, temperature it is! Fine particulate matter (PM2.5) seems to be more
|
||||
interesting to analyze though.
|
||||
We should check how many sensor stations provide useful data: We want only those
|
||||
boxes with a PM2.5 sensor, that are placed outdoors and are currently submitting
|
||||
measurements:
|
||||
|
@ -94,11 +94,12 @@ Thats still more than 200 measuring stations, we can work with that.
|
|||
### Analyzing sensor data
|
||||
Having analyzed the available data sources, let's finally get some measurements.
|
||||
We could call `osem_measurements(pm25_sensors)` now, however we are focussing on
|
||||
a restricted area of interest, the city of Berlin
|
||||
Luckily we can get the measurements filtered by a bounding box as well:
|
||||
a restricted area of interest, the city of Berlin.
|
||||
Luckily we can get the measurements filtered by a bounding box:
|
||||
|
||||
```{r}
|
||||
library(sf)
|
||||
library(units)
|
||||
library(lubridate)
|
||||
|
||||
# construct a bounding box: 12 kilometers around Berlin
|
||||
|
@ -131,7 +132,7 @@ plot(st_geometry(pm25_sf))
|
|||
`TODO`
|
||||
|
||||
### Monitoring growth of the dataset
|
||||
We can get the total size of the data set using `osem_counts()`. Lets create a
|
||||
We can get the total size of the dataset using `osem_counts()`. Lets create a
|
||||
time series of that.
|
||||
To do so, we create a function that attaches a timestamp to the data, and adds
|
||||
the new results to an existing `data.frame`:
|
||||
|
@ -141,7 +142,7 @@ build_osem_counts_timeseries = function (existing_data) {
|
|||
osem_counts() %>%
|
||||
list(time = Sys.time()) %>% # attach a timestamp
|
||||
as.data.frame() %>% # make it a dataframe.
|
||||
dplyr::bind_rows(existing_data) # combine with existing data
|
||||
rbind(existing_data) # combine with existing data
|
||||
}
|
||||
```
|
||||
|
||||
|
@ -153,7 +154,7 @@ osem_counts_ts = build_osem_counts_timeseries(osem_counts_ts)
|
|||
osem_counts_ts
|
||||
```
|
||||
|
||||
Once we have some data, we can plot the growth of data set over time:
|
||||
Once we have some data, we can plot the growth of dataset over time:
|
||||
|
||||
```{r}
|
||||
plot(measurements~time, osem_counts_ts)
|
||||
|
@ -163,7 +164,7 @@ Further analysis: `TODO`
|
|||
|
||||
### Outlook
|
||||
|
||||
Next iterations of this package could include the following features
|
||||
Next iterations of this package could include the following features:
|
||||
|
||||
- improved utility functions (`plot`, `summary`) for measurements and boxes
|
||||
- better integration of `sf` for spatial analysis
|
||||
|
|
Loading…
Add table
Reference in a new issue