add vignette
parent
747df08c39
commit
6bd59a71c4
@ -0,0 +1,172 @@
|
|||||||
|
---
|
||||||
|
title: "Analyzing environmental sensor data from openSenseMap.org in R"
|
||||||
|
author: "Norwin Roosen"
|
||||||
|
date: "`r Sys.Date()`"
|
||||||
|
output: rmarkdown::html_vignette
|
||||||
|
vignette: >
|
||||||
|
%\VignetteIndexEntry{Analyzing environmental sensor data from openSenseMap.org in R}
|
||||||
|
%\VignetteEngine{knitr::rmarkdown}
|
||||||
|
%\VignetteEncoding{UTF-8}
|
||||||
|
---
|
||||||
|
|
||||||
|
```{r setup, include=FALSE}
|
||||||
|
knitr::opts_chunk$set(echo = TRUE)
|
||||||
|
```
|
||||||
|
|
||||||
|
## Analyzing environmental sensor data from openSenseMap.org in R
|
||||||
|
|
||||||
|
This package provides data ingestion functions for almost any data stored on the
|
||||||
|
open data platform <https://opensensemap.org>.
|
||||||
|
Its main goals are to provide means for:
|
||||||
|
|
||||||
|
- big data analysis of the measurements stored on the platform
|
||||||
|
- sensor metadata analysis (sensor counts, spatial distribution, temporal trends)
|
||||||
|
|
||||||
|
> *Please note:* The openSenseMap API is sometimes a bit unstable when streaming
|
||||||
|
long responses, which results in `curl` complaining about `Unexpected EOF`. This
|
||||||
|
bug is beeing worked on upstream. Meanwhile you have to retry the request when
|
||||||
|
this occurs.
|
||||||
|
|
||||||
|
### Exploring the dataset
|
||||||
|
Before we look at actual observations, lets get a grasp of the openSenseMap
|
||||||
|
datasets' structure.
|
||||||
|
|
||||||
|
```{r}
|
||||||
|
library(magrittr)
|
||||||
|
library(opensensmapr)
|
||||||
|
|
||||||
|
all_sensors = osem_boxes()
|
||||||
|
summary(all_sensors)
|
||||||
|
```
|
||||||
|
|
||||||
|
This gives a good overview already: As of writing this, there are more than 600
|
||||||
|
sensor stations, of which ~50% are running. Most of them are placed outdoors and
|
||||||
|
have around 5 sensors each.
|
||||||
|
The oldest station is from May 2014, while the latest station was registered a
|
||||||
|
couple of minutes ago.
|
||||||
|
|
||||||
|
Another feature of interest is the spatial distribution of the boxes. `plot()`
|
||||||
|
can help us out here:
|
||||||
|
|
||||||
|
```{r}
|
||||||
|
plot(all_sensors)
|
||||||
|
```
|
||||||
|
|
||||||
|
Seems like we have to reduce our area of interest to Germany.
|
||||||
|
|
||||||
|
But what do these sensor stations actually measure? Lets find out.
|
||||||
|
`osem_phenomena()` gives us a named list of of the counts of each observed
|
||||||
|
phenomenon for the given set of sensor stations:
|
||||||
|
|
||||||
|
```{r}
|
||||||
|
phenoms = osem_phenomena(all_sensors)
|
||||||
|
str(phenoms)
|
||||||
|
```
|
||||||
|
|
||||||
|
Thats quite some noise there, with many phenomena being measured by a single
|
||||||
|
sensor only, or many duplicated phenomena due to slightly different spellings.
|
||||||
|
We should clean that up, but for now let's just filter out the noise and find
|
||||||
|
those phenomena with the high sensor numbers:
|
||||||
|
|
||||||
|
```{r}
|
||||||
|
phenoms[phenoms > 20]
|
||||||
|
```
|
||||||
|
|
||||||
|
Alright, temperature it is! PM2.5 seems to be more interesting to analyze though.
|
||||||
|
|
||||||
|
We should check how many sensor stations provide useful data: We want only those
|
||||||
|
boxes with a PM2.5 sensor, that are placed outdoors and are currently submitting
|
||||||
|
measurements:
|
||||||
|
|
||||||
|
```{r}
|
||||||
|
pm25_sensors = osem_boxes(
|
||||||
|
exposure = 'outdoor',
|
||||||
|
date = Sys.time(), # ±4 hours
|
||||||
|
phenomenon = 'PM2.5'
|
||||||
|
)
|
||||||
|
|
||||||
|
summary(pm25_sensors)
|
||||||
|
plot(pm25_sensors)
|
||||||
|
```
|
||||||
|
|
||||||
|
Thats still more than 200 measuring stations, we can work with that.
|
||||||
|
|
||||||
|
### Analyzing sensor data
|
||||||
|
Having analyzed the available data sources, let's finally get some measurements.
|
||||||
|
We could call `osem_measurements(pm25_sensors)` now, however we are focussing on
|
||||||
|
a restricted area of interest, the city of Berlin
|
||||||
|
Luckily we can get the measurements filtered by a bounding box as well:
|
||||||
|
|
||||||
|
```{r}
|
||||||
|
library(sf)
|
||||||
|
library(lubridate)
|
||||||
|
|
||||||
|
# construct a bounding box: 12 kilometers around Berlin
|
||||||
|
berlin = st_point(c(13.4034, 52.5120)) %>%
|
||||||
|
st_sfc(crs = 4326) %>%
|
||||||
|
st_transform(3857) %>% # allow setting a buffer in meters
|
||||||
|
st_buffer(units::set_units(12, km)) %>%
|
||||||
|
st_transform(4326) %>% # the opensensemap expects WGS 84
|
||||||
|
st_bbox()
|
||||||
|
|
||||||
|
pm25 = osem_measurements(
|
||||||
|
berlin,
|
||||||
|
phenomenon = 'PM2.5',
|
||||||
|
from = now() - days(31), # defaults to 2 days, maximum 31 days
|
||||||
|
to = now()
|
||||||
|
)
|
||||||
|
|
||||||
|
str(pm25)
|
||||||
|
plot(pm25)
|
||||||
|
```
|
||||||
|
|
||||||
|
Now we can get started with actual spatiotemporal data analysis. First plot the
|
||||||
|
measuring locations:
|
||||||
|
|
||||||
|
```{r}
|
||||||
|
pm25_sf = osem_as_sf(pm25)
|
||||||
|
plot(st_geometry(pm25_sf))
|
||||||
|
```
|
||||||
|
|
||||||
|
`TODO`
|
||||||
|
|
||||||
|
### Monitoring growth of the dataset
|
||||||
|
We can get the total size of the data set using `osem_counts()`. Lets create a
|
||||||
|
time series of that.
|
||||||
|
To do so, we create a function that attaches a timestamp to the data, and adds
|
||||||
|
the new results to an existing `data.frame`:
|
||||||
|
|
||||||
|
```{r}
|
||||||
|
build_osem_counts_timeseries = function (existing_data) {
|
||||||
|
osem_counts() %>%
|
||||||
|
list(time = Sys.time()) %>% # attach a timestamp
|
||||||
|
as.data.frame() %>% # make it a dataframe.
|
||||||
|
dplyr::bind_rows(existing_data) # combine with existing data
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
Now we can call it once every few minutes, to build the time series...
|
||||||
|
|
||||||
|
```{r}
|
||||||
|
osem_counts_ts = data.frame()
|
||||||
|
osem_counts_ts = build_osem_counts_timeseries(osem_counts_ts)
|
||||||
|
osem_counts_ts
|
||||||
|
```
|
||||||
|
|
||||||
|
Once we have some data, we can plot the growth of data set over time:
|
||||||
|
|
||||||
|
```{r}
|
||||||
|
plot(measurements~time, osem_counts_ts)
|
||||||
|
```
|
||||||
|
|
||||||
|
Further analysis: `TODO`
|
||||||
|
|
||||||
|
### Outlook
|
||||||
|
|
||||||
|
Next iterations of this package could include the following features
|
||||||
|
|
||||||
|
- improved utility functions (`plot`, `summary`) for measurements and boxes
|
||||||
|
- better integration of `sf` for spatial analysis
|
||||||
|
- better scaling data retrieval functions
|
||||||
|
- auto paging for time frames > 31 days
|
||||||
|
- API based on <https://archive.opensensemap.org>
|
Loading…
Reference in New Issue