You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

826 lines
24 KiB
C++

/**
* This program logs data from the Arduino ADC to a binary file.
*
* Samples are logged at regular intervals. Each Sample consists of the ADC
* values for the analog pins defined in the PIN_LIST array. The pins numbers
* may be in any order.
*
* Edit the configuration constants below to set the sample pins, sample rate,
* and other configuration values.
*
* If your SD card has a long write latency, it may be necessary to use
* slower sample rates. Using a Mega Arduino helps overcome latency
* problems since 13 512 byte buffers will be used.
*
* Each 512 byte data block in the file has a four byte header followed by up
* to 508 bytes of data. (508 values in 8-bit mode or 254 values in 10-bit mode)
* Each block contains an integral number of samples with unused space at the
* end of the block.
*
* Data is written to the file using a SD multiple block write command.
*/
#ifdef __AVR__
#include <SPI.h>
#include "SdFat.h"
#include "FreeStack.h"
#include "AnalogBinLogger.h"
//------------------------------------------------------------------------------
// Analog pin number list for a sample. Pins may be in any order and pin
// numbers may be repeated.
const uint8_t PIN_LIST[] = {0, 1, 2, 3, 4};
//------------------------------------------------------------------------------
// Sample rate in samples per second.
const float SAMPLE_RATE = 5000; // Must be 0.25 or greater.
// The interval between samples in seconds, SAMPLE_INTERVAL, may be set to a
// constant instead of being calculated from SAMPLE_RATE. SAMPLE_RATE is not
// used in the code below. For example, setting SAMPLE_INTERVAL = 2.0e-4
// will result in a 200 microsecond sample interval.
const float SAMPLE_INTERVAL = 1.0/SAMPLE_RATE;
// Setting ROUND_SAMPLE_INTERVAL non-zero will cause the sample interval to
// be rounded to a a multiple of the ADC clock period and will reduce sample
// time jitter.
#define ROUND_SAMPLE_INTERVAL 1
//------------------------------------------------------------------------------
// ADC clock rate.
// The ADC clock rate is normally calculated from the pin count and sample
// interval. The calculation attempts to use the lowest possible ADC clock
// rate.
//
// You can select an ADC clock rate by defining the symbol ADC_PRESCALER to
// one of these values. You must choose an appropriate ADC clock rate for
// your sample interval.
// #define ADC_PRESCALER 7 // F_CPU/128 125 kHz on an Uno
// #define ADC_PRESCALER 6 // F_CPU/64 250 kHz on an Uno
// #define ADC_PRESCALER 5 // F_CPU/32 500 kHz on an Uno
// #define ADC_PRESCALER 4 // F_CPU/16 1000 kHz on an Uno
// #define ADC_PRESCALER 3 // F_CPU/8 2000 kHz on an Uno (8-bit mode only)
//------------------------------------------------------------------------------
// Reference voltage. See the processor data-sheet for reference details.
// uint8_t const ADC_REF = 0; // External Reference AREF pin.
uint8_t const ADC_REF = (1 << REFS0); // Vcc Reference.
// uint8_t const ADC_REF = (1 << REFS1); // Internal 1.1 (only 644 1284P Mega)
// uint8_t const ADC_REF = (1 << REFS1) | (1 << REFS0); // Internal 1.1 or 2.56
//------------------------------------------------------------------------------
// File definitions.
//
// Maximum file size in blocks.
// The program creates a contiguous file with FILE_BLOCK_COUNT 512 byte blocks.
// This file is flash erased using special SD commands. The file will be
// truncated if logging is stopped early.
const uint32_t FILE_BLOCK_COUNT = 256000;
// log file base name. Must be six characters or less.
#define FILE_BASE_NAME "analog"
// Set RECORD_EIGHT_BITS non-zero to record only the high 8-bits of the ADC.
#define RECORD_EIGHT_BITS 0
//------------------------------------------------------------------------------
// Pin definitions.
//
// Digital pin to indicate an error, set to -1 if not used.
// The led blinks for fatal errors. The led goes on solid for SD write
// overrun errors and logging continues.
const int8_t ERROR_LED_PIN = 3;
// SD chip select pin.
const uint8_t SD_CS_PIN = SS;
//------------------------------------------------------------------------------
// Buffer definitions.
//
// The logger will use SdFat's buffer plus BUFFER_BLOCK_COUNT additional
// buffers. QUEUE_DIM must be a power of two larger than
//(BUFFER_BLOCK_COUNT + 1).
//
#if RAMEND < 0X8FF
#error Too little SRAM
//
#elif RAMEND < 0X10FF
// Use total of two 512 byte buffers.
const uint8_t BUFFER_BLOCK_COUNT = 1;
// Dimension for queues of 512 byte SD blocks.
const uint8_t QUEUE_DIM = 4; // Must be a power of two!
//
#elif RAMEND < 0X20FF
// Use total of five 512 byte buffers.
const uint8_t BUFFER_BLOCK_COUNT = 4;
// Dimension for queues of 512 byte SD blocks.
const uint8_t QUEUE_DIM = 8; // Must be a power of two!
//
#elif RAMEND < 0X40FF
// Use total of 13 512 byte buffers.
const uint8_t BUFFER_BLOCK_COUNT = 12;
// Dimension for queues of 512 byte SD blocks.
const uint8_t QUEUE_DIM = 16; // Must be a power of two!
//
#else // RAMEND
// Use total of 29 512 byte buffers.
const uint8_t BUFFER_BLOCK_COUNT = 28;
// Dimension for queues of 512 byte SD blocks.
const uint8_t QUEUE_DIM = 32; // Must be a power of two!
#endif // RAMEND
//==============================================================================
// End of configuration constants.
//==============================================================================
// Temporary log file. Will be deleted if a reset or power failure occurs.
#define TMP_FILE_NAME "tmp_log.bin"
// Size of file base name. Must not be larger than six.
const uint8_t BASE_NAME_SIZE = sizeof(FILE_BASE_NAME) - 1;
// Number of analog pins to log.
const uint8_t PIN_COUNT = sizeof(PIN_LIST)/sizeof(PIN_LIST[0]);
// Minimum ADC clock cycles per sample interval
const uint16_t MIN_ADC_CYCLES = 15;
// Extra cpu cycles to setup ADC with more than one pin per sample.
const uint16_t ISR_SETUP_ADC = PIN_COUNT > 1 ? 100 : 0;
// Maximum cycles for timer0 system interrupt, millis, micros.
const uint16_t ISR_TIMER0 = 160;
//==============================================================================
SdFat sd;
SdBaseFile binFile;
char binName[13] = FILE_BASE_NAME "00.bin";
#if RECORD_EIGHT_BITS
const size_t SAMPLES_PER_BLOCK = DATA_DIM8/PIN_COUNT;
typedef block8_t block_t;
#else // RECORD_EIGHT_BITS
const size_t SAMPLES_PER_BLOCK = DATA_DIM16/PIN_COUNT;
typedef block16_t block_t;
#endif // RECORD_EIGHT_BITS
block_t* emptyQueue[QUEUE_DIM];
uint8_t emptyHead;
uint8_t emptyTail;
block_t* fullQueue[QUEUE_DIM];
volatile uint8_t fullHead; // volatile insures non-interrupt code sees changes.
uint8_t fullTail;
// queueNext assumes QUEUE_DIM is a power of two
inline uint8_t queueNext(uint8_t ht) {
return (ht + 1) & (QUEUE_DIM -1);
}
//==============================================================================
// Interrupt Service Routines
// Pointer to current buffer.
block_t* isrBuf;
// Need new buffer if true.
bool isrBufNeeded = true;
// overrun count
uint16_t isrOver = 0;
// ADC configuration for each pin.
uint8_t adcmux[PIN_COUNT];
uint8_t adcsra[PIN_COUNT];
uint8_t adcsrb[PIN_COUNT];
uint8_t adcindex = 1;
// Insure no timer events are missed.
volatile bool timerError = false;
volatile bool timerFlag = false;
//------------------------------------------------------------------------------
// ADC done interrupt.
ISR(ADC_vect) {
// Read ADC data.
#if RECORD_EIGHT_BITS
uint8_t d = ADCH;
#else // RECORD_EIGHT_BITS
// This will access ADCL first.
uint16_t d = ADC;
#endif // RECORD_EIGHT_BITS
if (isrBufNeeded && emptyHead == emptyTail) {
// no buffers - count overrun
if (isrOver < 0XFFFF) {
isrOver++;
}
// Avoid missed timer error.
timerFlag = false;
return;
}
// Start ADC
if (PIN_COUNT > 1) {
ADMUX = adcmux[adcindex];
ADCSRB = adcsrb[adcindex];
ADCSRA = adcsra[adcindex];
if (adcindex == 0) {
timerFlag = false;
}
adcindex = adcindex < (PIN_COUNT - 1) ? adcindex + 1 : 0;
} else {
timerFlag = false;
}
// Check for buffer needed.
if (isrBufNeeded) {
// Remove buffer from empty queue.
isrBuf = emptyQueue[emptyTail];
emptyTail = queueNext(emptyTail);
isrBuf->count = 0;
isrBuf->overrun = isrOver;
isrBufNeeded = false;
}
// Store ADC data.
isrBuf->data[isrBuf->count++] = d;
// Check for buffer full.
if (isrBuf->count >= PIN_COUNT*SAMPLES_PER_BLOCK) {
// Put buffer isrIn full queue.
uint8_t tmp = fullHead; // Avoid extra fetch of volatile fullHead.
fullQueue[tmp] = (block_t*)isrBuf;
fullHead = queueNext(tmp);
// Set buffer needed and clear overruns.
isrBufNeeded = true;
isrOver = 0;
}
}
//------------------------------------------------------------------------------
// timer1 interrupt to clear OCF1B
ISR(TIMER1_COMPB_vect) {
// Make sure ADC ISR responded to timer event.
if (timerFlag) {
timerError = true;
}
timerFlag = true;
}
//==============================================================================
// Error messages stored in flash.
#define error(msg) {sd.errorPrint(F(msg));fatalBlink();}
//------------------------------------------------------------------------------
//
void fatalBlink() {
while (true) {
if (ERROR_LED_PIN >= 0) {
digitalWrite(ERROR_LED_PIN, HIGH);
delay(200);
digitalWrite(ERROR_LED_PIN, LOW);
delay(200);
}
}
}
//==============================================================================
#if ADPS0 != 0 || ADPS1 != 1 || ADPS2 != 2
#error unexpected ADC prescaler bits
#endif
//------------------------------------------------------------------------------
// initialize ADC and timer1
void adcInit(metadata_t* meta) {
uint8_t adps; // prescaler bits for ADCSRA
uint32_t ticks = F_CPU*SAMPLE_INTERVAL + 0.5; // Sample interval cpu cycles.
if (ADC_REF & ~((1 << REFS0) | (1 << REFS1))) {
error("Invalid ADC reference");
}
#ifdef ADC_PRESCALER
if (ADC_PRESCALER > 7 || ADC_PRESCALER < 2) {
error("Invalid ADC prescaler");
}
adps = ADC_PRESCALER;
#else // ADC_PRESCALER
// Allow extra cpu cycles to change ADC settings if more than one pin.
int32_t adcCycles = (ticks - ISR_TIMER0)/PIN_COUNT - ISR_SETUP_ADC;
for (adps = 7; adps > 0; adps--) {
if (adcCycles >= (MIN_ADC_CYCLES << adps)) {
break;
}
}
#endif // ADC_PRESCALER
meta->adcFrequency = F_CPU >> adps;
if (meta->adcFrequency > (RECORD_EIGHT_BITS ? 2000000 : 1000000)) {
error("Sample Rate Too High");
}
#if ROUND_SAMPLE_INTERVAL
// Round so interval is multiple of ADC clock.
ticks += 1 << (adps - 1);
ticks >>= adps;
ticks <<= adps;
#endif // ROUND_SAMPLE_INTERVAL
if (PIN_COUNT > sizeof(meta->pinNumber)/sizeof(meta->pinNumber[0])) {
error("Too many pins");
}
meta->pinCount = PIN_COUNT;
meta->recordEightBits = RECORD_EIGHT_BITS;
for (int i = 0; i < PIN_COUNT; i++) {
uint8_t pin = PIN_LIST[i];
if (pin >= NUM_ANALOG_INPUTS) {
error("Invalid Analog pin number");
}
meta->pinNumber[i] = pin;
// Set ADC reference and low three bits of analog pin number.
adcmux[i] = (pin & 7) | ADC_REF;
if (RECORD_EIGHT_BITS) {
adcmux[i] |= 1 << ADLAR;
}
// If this is the first pin, trigger on timer/counter 1 compare match B.
adcsrb[i] = i == 0 ? (1 << ADTS2) | (1 << ADTS0) : 0;
#ifdef MUX5
if (pin > 7) {
adcsrb[i] |= (1 << MUX5);
}
#endif // MUX5
adcsra[i] = (1 << ADEN) | (1 << ADIE) | adps;
adcsra[i] |= i == 0 ? 1 << ADATE : 1 << ADSC;
}
// Setup timer1
TCCR1A = 0;
uint8_t tshift;
if (ticks < 0X10000) {
// no prescale, CTC mode
TCCR1B = (1 << WGM13) | (1 << WGM12) | (1 << CS10);
tshift = 0;
} else if (ticks < 0X10000*8) {
// prescale 8, CTC mode
TCCR1B = (1 << WGM13) | (1 << WGM12) | (1 << CS11);
tshift = 3;
} else if (ticks < 0X10000*64) {
// prescale 64, CTC mode
TCCR1B = (1 << WGM13) | (1 << WGM12) | (1 << CS11) | (1 << CS10);
tshift = 6;
} else if (ticks < 0X10000*256) {
// prescale 256, CTC mode
TCCR1B = (1 << WGM13) | (1 << WGM12) | (1 << CS12);
tshift = 8;
} else if (ticks < 0X10000*1024) {
// prescale 1024, CTC mode
TCCR1B = (1 << WGM13) | (1 << WGM12) | (1 << CS12) | (1 << CS10);
tshift = 10;
} else {
error("Sample Rate Too Slow");
}
// divide by prescaler
ticks >>= tshift;
// set TOP for timer reset
ICR1 = ticks - 1;
// compare for ADC start
OCR1B = 0;
// multiply by prescaler
ticks <<= tshift;
// Sample interval in CPU clock ticks.
meta->sampleInterval = ticks;
meta->cpuFrequency = F_CPU;
float sampleRate = (float)meta->cpuFrequency/meta->sampleInterval;
Serial.print(F("Sample pins:"));
for (uint8_t i = 0; i < meta->pinCount; i++) {
Serial.print(' ');
Serial.print(meta->pinNumber[i], DEC);
}
Serial.println();
Serial.print(F("ADC bits: "));
Serial.println(meta->recordEightBits ? 8 : 10);
Serial.print(F("ADC clock kHz: "));
Serial.println(meta->adcFrequency/1000);
Serial.print(F("Sample Rate: "));
Serial.println(sampleRate);
Serial.print(F("Sample interval usec: "));
Serial.println(1000000.0/sampleRate, 4);
}
//------------------------------------------------------------------------------
// enable ADC and timer1 interrupts
void adcStart() {
// initialize ISR
isrBufNeeded = true;
isrOver = 0;
adcindex = 1;
// Clear any pending interrupt.
ADCSRA |= 1 << ADIF;
// Setup for first pin.
ADMUX = adcmux[0];
ADCSRB = adcsrb[0];
ADCSRA = adcsra[0];
// Enable timer1 interrupts.
timerError = false;
timerFlag = false;
TCNT1 = 0;
TIFR1 = 1 << OCF1B;
TIMSK1 = 1 << OCIE1B;
}
//------------------------------------------------------------------------------
void adcStop() {
TIMSK1 = 0;
ADCSRA = 0;
}
//------------------------------------------------------------------------------
// Convert binary file to csv file.
void binaryToCsv() {
uint8_t lastPct = 0;
block_t buf;
metadata_t* pm;
uint32_t t0 = millis();
char csvName[13];
StdioStream csvStream;
if (!binFile.isOpen()) {
Serial.println(F("No current binary file"));
return;
}
binFile.rewind();
if (!binFile.read(&buf , 512) == 512) {
error("Read metadata failed");
}
// Create a new csv file.
strcpy(csvName, binName);
strcpy(&csvName[BASE_NAME_SIZE + 3], "csv");
if (!csvStream.fopen(csvName, "w")) {
error("open csvStream failed");
}
Serial.println();
Serial.print(F("Writing: "));
Serial.print(csvName);
Serial.println(F(" - type any character to stop"));
pm = (metadata_t*)&buf;
csvStream.print(F("Interval,"));
float intervalMicros = 1.0e6*pm->sampleInterval/(float)pm->cpuFrequency;
csvStream.print(intervalMicros, 4);
csvStream.println(F(",usec"));
for (uint8_t i = 0; i < pm->pinCount; i++) {
if (i) {
csvStream.putc(',');
}
csvStream.print(F("pin"));
csvStream.print(pm->pinNumber[i]);
}
csvStream.println();
uint32_t tPct = millis();
while (!Serial.available() && binFile.read(&buf, 512) == 512) {
if (buf.count == 0) {
break;
}
if (buf.overrun) {
csvStream.print(F("OVERRUN,"));
csvStream.println(buf.overrun);
}
for (uint16_t j = 0; j < buf.count; j += PIN_COUNT) {
for (uint16_t i = 0; i < PIN_COUNT; i++) {
if (i) {
csvStream.putc(',');
}
csvStream.print(buf.data[i + j]);
}
csvStream.println();
}
if ((millis() - tPct) > 1000) {
uint8_t pct = binFile.curPosition()/(binFile.fileSize()/100);
if (pct != lastPct) {
tPct = millis();
lastPct = pct;
Serial.print(pct, DEC);
Serial.println('%');
}
}
if (Serial.available()) {
break;
}
}
csvStream.fclose();
Serial.print(F("Done: "));
Serial.print(0.001*(millis() - t0));
Serial.println(F(" Seconds"));
}
//------------------------------------------------------------------------------
// read data file and check for overruns
void checkOverrun() {
bool headerPrinted = false;
block_t buf;
uint32_t bgnBlock, endBlock;
uint32_t bn = 0;
if (!binFile.isOpen()) {
Serial.println(F("No current binary file"));
return;
}
if (!binFile.contiguousRange(&bgnBlock, &endBlock)) {
error("contiguousRange failed");
}
binFile.rewind();
Serial.println();
Serial.println(F("Checking overrun errors - type any character to stop"));
if (!binFile.read(&buf , 512) == 512) {
error("Read metadata failed");
}
bn++;
while (binFile.read(&buf, 512) == 512) {
if (buf.count == 0) {
break;
}
if (buf.overrun) {
if (!headerPrinted) {
Serial.println();
Serial.println(F("Overruns:"));
Serial.println(F("fileBlockNumber,sdBlockNumber,overrunCount"));
headerPrinted = true;
}
Serial.print(bn);
Serial.print(',');
Serial.print(bgnBlock + bn);
Serial.print(',');
Serial.println(buf.overrun);
}
bn++;
}
if (!headerPrinted) {
Serial.println(F("No errors found"));
} else {
Serial.println(F("Done"));
}
}
//------------------------------------------------------------------------------
// dump data file to Serial
void dumpData() {
block_t buf;
if (!binFile.isOpen()) {
Serial.println(F("No current binary file"));
return;
}
binFile.rewind();
if (binFile.read(&buf , 512) != 512) {
error("Read metadata failed");
}
Serial.println();
Serial.println(F("Type any character to stop"));
delay(1000);
while (!Serial.available() && binFile.read(&buf , 512) == 512) {
if (buf.count == 0) {
break;
}
if (buf.overrun) {
Serial.print(F("OVERRUN,"));
Serial.println(buf.overrun);
}
for (uint16_t i = 0; i < buf.count; i++) {
Serial.print(buf.data[i], DEC);
if ((i+1)%PIN_COUNT) {
Serial.print(',');
} else {
Serial.println();
}
}
}
Serial.println(F("Done"));
}
//------------------------------------------------------------------------------
// log data
// max number of blocks to erase per erase call
uint32_t const ERASE_SIZE = 262144L;
void logData() {
uint32_t bgnBlock, endBlock;
// Allocate extra buffer space.
block_t block[BUFFER_BLOCK_COUNT];
Serial.println();
// Initialize ADC and timer1.
adcInit((metadata_t*) &block[0]);
// Find unused file name.
if (BASE_NAME_SIZE > 6) {
error("FILE_BASE_NAME too long");
}
while (sd.exists(binName)) {
if (binName[BASE_NAME_SIZE + 1] != '9') {
binName[BASE_NAME_SIZE + 1]++;
} else {
binName[BASE_NAME_SIZE + 1] = '0';
if (binName[BASE_NAME_SIZE] == '9') {
error("Can't create file name");
}
binName[BASE_NAME_SIZE]++;
}
}
// Delete old tmp file.
if (sd.exists(TMP_FILE_NAME)) {
Serial.println(F("Deleting tmp file"));
if (!sd.remove(TMP_FILE_NAME)) {
error("Can't remove tmp file");
}
}
// Create new file.
Serial.println(F("Creating new file"));
binFile.close();
if (!binFile.createContiguous(TMP_FILE_NAME, 512 * FILE_BLOCK_COUNT)) {
error("createContiguous failed");
}
// Get the address of the file on the SD.
if (!binFile.contiguousRange(&bgnBlock, &endBlock)) {
error("contiguousRange failed");
}
// Use SdFat's internal buffer.
uint8_t* cache = (uint8_t*)sd.vol()->cacheClear();
if (cache == 0) {
error("cacheClear failed");
}
// Flash erase all data in the file.
Serial.println(F("Erasing all data"));
uint32_t bgnErase = bgnBlock;
uint32_t endErase;
while (bgnErase < endBlock) {
endErase = bgnErase + ERASE_SIZE;
if (endErase > endBlock) {
endErase = endBlock;
}
if (!sd.card()->erase(bgnErase, endErase)) {
error("erase failed");
}
bgnErase = endErase + 1;
}
// Start a multiple block write.
if (!sd.card()->writeStart(bgnBlock, FILE_BLOCK_COUNT)) {
error("writeBegin failed");
}
// Write metadata.
if (!sd.card()->writeData((uint8_t*)&block[0])) {
error("Write metadata failed");
}
// Initialize queues.
emptyHead = emptyTail = 0;
fullHead = fullTail = 0;
// Use SdFat buffer for one block.
emptyQueue[emptyHead] = (block_t*)cache;
emptyHead = queueNext(emptyHead);
// Put rest of buffers in the empty queue.
for (uint8_t i = 0; i < BUFFER_BLOCK_COUNT; i++) {
emptyQueue[emptyHead] = &block[i];
emptyHead = queueNext(emptyHead);
}
// Give SD time to prepare for big write.
delay(1000);
Serial.println(F("Logging - type any character to stop"));
// Wait for Serial Idle.
Serial.flush();
delay(10);
uint32_t bn = 1;
uint32_t t0 = millis();
uint32_t t1 = t0;
uint32_t overruns = 0;
uint32_t count = 0;
uint32_t maxLatency = 0;
// Start logging interrupts.
adcStart();
while (1) {
if (fullHead != fullTail) {
// Get address of block to write.
block_t* pBlock = fullQueue[fullTail];
// Write block to SD.
uint32_t usec = micros();
if (!sd.card()->writeData((uint8_t*)pBlock)) {
error("write data failed");
}
usec = micros() - usec;
t1 = millis();
if (usec > maxLatency) {
maxLatency = usec;
}
count += pBlock->count;
// Add overruns and possibly light LED.
if (pBlock->overrun) {
overruns += pBlock->overrun;
if (ERROR_LED_PIN >= 0) {
digitalWrite(ERROR_LED_PIN, HIGH);
}
}
// Move block to empty queue.
emptyQueue[emptyHead] = pBlock;
emptyHead = queueNext(emptyHead);
fullTail = queueNext(fullTail);
bn++;
if (bn == FILE_BLOCK_COUNT) {
// File full so stop ISR calls.
adcStop();
break;
}
}
if (timerError) {
error("Missed timer event - rate too high");
}
if (Serial.available()) {
// Stop ISR calls.
adcStop();
if (isrBuf != 0 && isrBuf->count >= PIN_COUNT) {
// Truncate to last complete sample.
isrBuf->count = PIN_COUNT*(isrBuf->count/PIN_COUNT);
// Put buffer in full queue.
fullQueue[fullHead] = isrBuf;
fullHead = queueNext(fullHead);
isrBuf = 0;
}
if (fullHead == fullTail) {
break;
}
}
}
if (!sd.card()->writeStop()) {
error("writeStop failed");
}
// Truncate file if recording stopped early.
if (bn != FILE_BLOCK_COUNT) {
Serial.println(F("Truncating file"));
if (!binFile.truncate(512L * bn)) {
error("Can't truncate file");
}
}
if (!binFile.rename(sd.vwd(), binName)) {
error("Can't rename file");
}
Serial.print(F("File renamed: "));
Serial.println(binName);
Serial.print(F("Max block write usec: "));
Serial.println(maxLatency);
Serial.print(F("Record time sec: "));
Serial.println(0.001*(t1 - t0), 3);
Serial.print(F("Sample count: "));
Serial.println(count/PIN_COUNT);
Serial.print(F("Samples/sec: "));
Serial.println((1000.0/PIN_COUNT)*count/(t1-t0));
Serial.print(F("Overruns: "));
Serial.println(overruns);
Serial.println(F("Done"));
}
//------------------------------------------------------------------------------
void setup(void) {
if (ERROR_LED_PIN >= 0) {
pinMode(ERROR_LED_PIN, OUTPUT);
}
Serial.begin(9600);
// Read the first sample pin to init the ADC.
analogRead(PIN_LIST[0]);
Serial.print(F("FreeStack: "));
Serial.println(FreeStack());
// Initialize at the highest speed supported by the board that is
// not over 50 MHz. Try a lower speed if SPI errors occur.
if (!sd.begin(SD_CS_PIN, SD_SCK_MHZ(50))) {
sd.initErrorPrint();
fatalBlink();
}
}
//------------------------------------------------------------------------------
void loop(void) {
// Read any Serial data.
do {
delay(10);
} while (Serial.available() && Serial.read() >= 0);
Serial.println();
Serial.println(F("type:"));
Serial.println(F("c - convert file to csv"));
Serial.println(F("d - dump data to Serial"));
Serial.println(F("e - overrun error details"));
Serial.println(F("r - record ADC data"));
while(!Serial.available()) {
SysCall::yield();
}
char c = tolower(Serial.read());
if (ERROR_LED_PIN >= 0) {
digitalWrite(ERROR_LED_PIN, LOW);
}
// Read any Serial data.
do {
delay(10);
} while (Serial.available() && Serial.read() >= 0);
if (c == 'c') {
binaryToCsv();
} else if (c == 'd') {
dumpData();
} else if (c == 'e') {
checkOverrun();
} else if (c == 'r') {
logData();
} else {
Serial.println(F("Invalid entry"));
}
}
#else // __AVR__
#error This program is only for AVR.
#endif // __AVR__