Compare commits

..

1 Commits

Author SHA1 Message Date
noerw 86fbc450ba move libraries to ../libraries 7 years ago

@ -1,68 +0,0 @@
# mobile senseBox
This is some Arduino code for GPS tracked senseBoxes.
They have an SDS011 particulate matter sensor & HDC1008 Temp & Humidity sensor
attached and transmit their measurements to opensensemap.org.
There are multiple variants to make use of various hardware I had available, and
to evaluate different use cases and workflows of data transmission.
Each sketch folder has its own readme with (more or less) detailed documentation.
The `libraries` folder contains all code that any sketch may depend on.
The the most simple solution to use these sketches is to make a backup of your
existing `~/Arduino` folder, and clone this repository there instead:
```sh
mv ~/Arduino ~/Arduino.bak
git clone https://github.com/noerw/mobile-sensebox ~/Arduino
```
## Hardware
The microcontroller & communication protocol differs for the sketches, but all
variants require a GPS device, a microcontroller with I2C, 2 UARTs (or some sort
of software UART), as well as an Novafit SDS011 & a Bosch HDC1008.
My builds of all these setups are powered by a 5.6Ah LiPo through an Adafruit
LiPo charger via USB, and enclosed in a 15x8x8 case.
The humidity sensor is included for reference, as the SDS011 only provides valid
data at low humidity. The sensor is enclosed within the case (which heats up
quite a bit), which makes the measurements quite inaccurate, they should only be
treated as approximations.
This setup is quite suboptimal for regular deployment (eg. daily commute by
bike), see `Future Work`.
### `./lora-gps`
Arduino Mega + Dragino LoRa & GPS Shield + senseBox Shield (SD card)
- transmitting data via LoRa to opensensemap.org through thethingsnetwork.org (details in SETUP.md)
- additionally saving to SD card if no LoRa coverage is available
- Arduino Uno should work as well, you need to play around with SoftSerial i guess..
### `./esp8266-gps`
Wemos D1 (ESP8266) + senseBox Shield
- stores measurements locally on 3MB SPIFFS, and uploads via WiFi when available
- requires installation of ESP8266 Arduino SDK, see `esp8266-gps/README.md`
- senseBox shield only used for ease of use with JST-connectors, not needed
### `./sdcard-gps`
Arduino Mega + senseBox Shield
- logging to SD card, manual upload to opensensemap.org
## Future Work
- Evaluation of SDS011 in a mobile environment: Influence of wind, sunlight,
vibrations, differing orientations
- Averaging of measurement values
- tradeoff: less outliers <-> smaller spatial acurracy
- Improved case
- power switch on the outside
- simple, quick mounting on a bike
- status LEDs about connectivity, GPS
- more neutral placement of humidity sensor
- all-weather proof
# License
- sketch directories: MIT Norwin Roosen
- `libraries` directory: see each subdirectory

@ -1,295 +0,0 @@
/***********************
This library was written for the Texas Instruments
HDC100X temperature and humidity sensor.
It has been tested for the HDC1000 and the HDC1008
Buy the HDC1008 breakout board at: https://www.tindie.com/stores/RFgermany
This library is made by Florian Roesner.
Released under GNU GPL v2.0 license.
*************************/
//#include "Arduino.h"
#include "HDC100X.h"
//#include "Wire.h"
//######-----------------------------------------------------------------------
//######-----------------------------------------------------------------------
//PUBLIC:
//######-----------------------------------------------------------------------
//######-----------------------------------------------------------------------
HDC100X::HDC100X(){
ownAddr = HDC100X_ADDR1;
dataReadyPin = -1;
}
//-----------------------------------------------------------------------
HDC100X::HDC100X(uint8_t address){
ownAddr = address;
//dataReadyPin = pin;
}
//-----------------------------------------------------------------------
HDC100X::HDC100X(bool addr0, bool addr1){
// set the two bits the way you set the address jumpers
ownAddr = 0b1000000 |(addr0|(addr1<<1));
//dataReadyPin = pin;
}
//######-----------------------------------------------------------------------
//######-----------------------------------------------------------------------
uint8_t HDC100X::begin(uint8_t mode, uint8_t tempRes, uint8_t humiRes, bool heaterState){
int i;
/* sets the mode and resolution and the state of the heater element. care must be taken, because it will change the temperature reading
** in:
** mode: HDC100X_TEMP_HUMI
** tempRes: HDC100X_11BIT/HDC100X_14BIT
** humiRes: HDC100X_8BIT/HDC100X_11BIT/HDC100X_14BIT
** heaterState: ENABLE/DISABLE
** out:
** high byte of the configuration register
*/
Wire.begin();
// test I2C address
Wire.beginTransmission(ownAddr);
i = Wire.endTransmission();
if(i != 0) // error device not found
{
for(int tries=3; tries!=0; tries--)
{
Wire.beginTransmission(HDC100X_ADDR1);
i = Wire.endTransmission();
if(i == 0)
{
ownAddr = HDC100X_ADDR1;
break;
}
delay(20); // wait 20ms
Wire.beginTransmission(HDC100X_ADDR2);
i = Wire.endTransmission();
if(i == 0)
{
ownAddr = HDC100X_ADDR2;
break;
}
delay(20); // wait 20ms
Wire.beginTransmission(HDC100X_ADDR3);
i = Wire.endTransmission();
if(i == 0)
{
ownAddr = HDC100X_ADDR3;
break;
}
delay(20); // wait 20ms
Wire.beginTransmission(HDC100X_ADDR4);
i = Wire.endTransmission();
if(i == 0)
{
ownAddr = HDC100X_ADDR4;
break;
}
delay(20); // wait 20ms
}
}
HDCmode = mode;
return writeConfigData(mode|(tempRes<<2)|humiRes|(heaterState<<5));
}
//-----------------------------------------------------------------------
uint8_t HDC100X::begin(uint8_t mode, uint8_t resulution, bool heaterState){
/* sets the mode, resolution and heaterState. Care must be taken, because it will change the temperature reading
** in:
** mode: HDC100X_TEMP/HDC100X_HUMI
** resolution: HDC100X_8BIT(just for the humidity)/HDC100X_11BIT(both)/HDC100X_14BIT(both)
** heaterState: ENABLE/DISABLE
** out:
** high byte of the configuration register
*/
Wire.begin();
HDCmode = mode;
if(mode == HDC100X_HUMI) return writeConfigData(resulution|(heaterState<<5));
else return writeConfigData((resulution<<2)|(heaterState<<5));
}
//######-----------------------------------------------------------------------
void HDC100X::setAddr(uint8_t address){
/* sets the slave address
** in:
** address: slave address byte
** out:
** none
*/
ownAddr = address;
}
//-----------------------------------------------------------------------
void HDC100X::setAddr(bool addr0, bool addr1){
/* sets the slave address
** in:
** addr0: true/false
** addr1: true/false
** out:
** none
*/
ownAddr = 0b1000000 |(addr0|(addr1<<1));
}
//-----------------------------------------------------------------------
void HDC100X::setDrPin(int8_t pin){
dataReadyPin = pin;
}
//######-----------------------------------------------------------------------
//######-----------------------------------------------------------------------
uint8_t HDC100X::setMode(uint8_t mode, uint8_t tempRes, uint8_t humiRes){
/* sets the mode and resolution
** in:
** mode: HDC100X_TEMP_HUMI
** tempRes: HDC100X_11BIT/HDC100X_14BIT
** humiRes: HDC100X_8BIT/HDC100X_11BIT/HDC100X_14BIT
** out:
** high byte of the configuration register
*/
uint8_t tempReg = getConfigReg() & 0xA0;
HDCmode = mode;
return writeConfigData(tempReg|mode|(tempRes<<2)|humiRes);
}
//-----------------------------------------------------------------------
uint8_t HDC100X::setMode(uint8_t mode, uint8_t resolution){
/* sets the mode and resolution
** in:
** mode: HDC100X_TEMP/HDC100X_HUMI
** resolution: HDC100X_8BIT(just for the humidity)/HDC100X_11BIT(both)/HDC100X_14BIT(both)
** out:
** high byte of the configuration register
*/
uint8_t tempReg = getConfigReg() & 0xA0;
HDCmode = mode;
if(mode == HDC100X_HUMI) return writeConfigData(tempReg|resolution);
return writeConfigData(tempReg|(resolution<<2));
}
//######-----------------------------------------------------------------------
//######-----------------------------------------------------------------------
uint8_t HDC100X::setHeater(bool state){
/* turns on the heater to get rid of condensation. Care must be taken, because it will change the temperature reading
** in:
** state: true/false
** out:
** high byte of the configuration register
*/
uint8_t regData = getConfigReg() & 0x5F;
if(state) return writeConfigData(regData|(state<<5));
return writeConfigData(regData);
}
//######-----------------------------------------------------------------------
//######-----------------------------------------------------------------------
bool HDC100X::battLow(void){
// returns a false if input voltage is higher than 2.8V and if lower a true
if(getConfigReg() & 0x08) return true;
return false;
}
//######-----------------------------------------------------------------------
//######-----------------------------------------------------------------------
float HDC100X::getTemp(void){
// returns the a float number of the temperature in degrees Celsius
if(HDCmode == HDC100X_TEMP || HDCmode == HDC100X_TEMP_HUMI)
return ((float)getRawTemp()/65536.0*165.0-40.0);
return 0.0;
}
//-----------------------------------------------------------------------
float HDC100X::getHumi(void){
// returns the a float number of the humidity in percent
if(HDCmode == HDC100X_HUMI || HDCmode == HDC100X_TEMP_HUMI)
return ((float)getRawHumi()/65536.0*100.0);
return 0.0;
}
//######-----------------------------------------------------------------------
//######-----------------------------------------------------------------------
uint16_t HDC100X::getRawTemp(void){
// returns the raw 16bit data of the temperature register
if(HDCmode == HDC100X_TEMP || HDCmode == HDC100X_TEMP_HUMI)
return read2Byte(HDC100X_TEMP_REG);
return 0;
}
//-----------------------------------------------------------------------
uint16_t HDC100X::getRawHumi(void){
// returns the raw 16bit data of the humidity register
if(HDCmode == HDC100X_HUMI || HDCmode == HDC100X_TEMP_HUMI)
return read2Byte(HDC100X_HUMI_REG);
return 0;
}
//######-----------------------------------------------------------------------
//######-----------------------------------------------------------------------
uint8_t HDC100X::getConfigReg(void){
// returns the high byte of the configuration register
return (read2Byte(HDC100X_CONFIG_REG)>>8);
}
//######-----------------------------------------------------------------------
//######-----------------------------------------------------------------------
uint16_t HDC100X::read2Byte(uint8_t reg){
/* reads two bytes from the defined register
** in:
** reg: HDC100X_TEMP_REG/HDC100X_HUMI_REG/HDC100X_CONFIG_REG/HDC100X_ID1_REG/HDC100X_ID2_REG/HDC100X_ID3_REG
** out:
** two byte of data from the defined register
*/
uint16_t data=0;
setRegister(reg);
Wire.requestFrom(ownAddr, 2U);
if(Wire.available()>=2){
data = Wire.read()<<8;
data += Wire.read();
}
return data;
}
uint8_t HDC100X::writeConfigData(uint8_t config){
/* writes the config byte to the configuration register
** in:
** config: one byte
** out:
** one byte 0:success 1:data too long to fit in transmit buffer 2:received NACK on transmit of address 3:received NACK on transmit of data 4:other error
*/
Wire.beginTransmission(ownAddr);
Wire.write(HDC100X_CONFIG_REG);
Wire.write(config);
Wire.write(0x00); //the last 8 bits are always 0
return Wire.endTransmission();
}
//######-----------------------------------------------------------------------
//######-----------------------------------------------------------------------
//PRIVATE:
//######-----------------------------------------------------------------------
//######-----------------------------------------------------------------------
void HDC100X::setRegister(uint8_t reg){
/* set the register for the next read or write cycle
** in:
** reg: HDC100X_TEMP_REG/HDC100X_HUMI_REG/HDC100X_CONFIG_REG/HDC100X_ID1_REG/HDC100X_ID2_REG/HDC100X_ID3_REG
** out:
** none
*/
Wire.beginTransmission(ownAddr);
Wire.write(reg);
Wire.endTransmission();
delay(10); // wait a little so that the sensor can set its register
}

@ -1,89 +0,0 @@
/***********************
This library was written for the Texas Instruments
HDC100X temperature and humidity sensor.
It has been tested for the HDC1000 and the HDC1008
Buy the HDC1008 breakout board at: https://www.tindie.com/stores/RFgermany
This library is made by Florian Roesner.
Released under GNU GPL v2.0 license.
*************************/
#ifndef _HDC100X_H_
#define _HDC100X_H_
#include <inttypes.h>
#include "Wire.h"
#if (ARDUINO >= 100)
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
#define HDC100X_ADDR1 0x43
#define HDC100X_ADDR2 0x40
#define HDC100X_ADDR3 0x41
#define HDC100X_ADDR4 0x42
#define HDC100X_TEMP_REG 0x00
#define HDC100X_HUMI_REG 0x01
#define HDC100X_CONFIG_REG 0x02
#define HDC100X_ID1_REG 0xFB
#define HDC100X_ID2_REG 0xFC
#define HDC100X_ID3_REG 0xFD
#define HDC100X_RST 0x80
#define HDC100X_TEMP_HUMI 0x16
#define HDC100X_HUMI 1
#define HDC100X_TEMP 0
#define HDC100X_14BIT 0x00
#define HDC100X_11BIT 0x01
#define HDC100X_8BIT 0x02
#define DISABLE 0
#define ENABLE 1
class HDC100X{
public:
HDC100X();
HDC100X(uint8_t address);
HDC100X(bool addr0, bool addr1);
uint8_t begin(uint8_t mode, uint8_t tempRes, uint8_t humiRes, bool heaterState);
uint8_t begin(uint8_t mode, uint8_t resulution, bool heaterState);
void setAddr(bool addr0, bool addr1);
void setAddr(uint8_t address);
void setDrPin(int8_t pin);
uint8_t setMode(uint8_t mode, uint8_t tempRes, uint8_t humiRes);
uint8_t setMode(uint8_t mode, uint8_t resolution);
uint8_t setHeater(bool state);
bool battLow(void);
float getTemp(void);
float getHumi(void);
uint16_t getRawTemp(void);
uint16_t getRawHumi(void);
uint8_t getConfigReg(void);
uint16_t read2Byte(uint8_t reg);
uint8_t writeConfigData(uint8_t config);
private:
uint8_t ownAddr;
uint8_t dataReadyPin;
uint8_t HDCmode;
void setRegister(uint8_t reg);
};
#endif //_HDC100X_H_

@ -1,52 +0,0 @@
#######################################
# Syntax Coloring Map
#######################################
DISABLE KEYWORD2
ENABLE KEYWORD2
#######################################
# Datatypes (KEYWORD1)
#######################################
HDC100X KEYWORD1
#######################################
# Methods and Functions (KEYWORD2)
#######################################
begin KEYWORD2
setAddr KEYWORD2
setDrPin KEYWORD2
setMode KEYWORD2
setHeater KEYWORD2
battLow KEYWORD2
getTemp KEYWORD2
getHumi KEYWORD2
getRawTemp KEYWORD2
getRawHumi KEYWORD2
getConfigReg KEYWORD2
read2Byte KEYWORD2
setRegister KEYWORD2
writeConfigData KEYWORD2
######################################
# Constants (LITERAL1)
#######################################
HDC100X_DEFAULT_ADDR LITERAL1
HDC100X_TEMP_REG LITERAL1
HDC100X_HUMI_REG LITERAL1
HDC100X_CONFIG_REG LITERAL1
HDC100X_ID1_REG LITERAL1
HDC100X_ID2_REG LITERAL1
HDC100X_ID3_REG LITERAL1
HDC100X_RST LITERAL1
HDC100X_TEMP_HUMI LITERAL1
HDC100X_HUMI LITERAL1
HDC100X_TEMP LITERAL1
HDC100X_14BIT LITERAL1
HDC100X_11BIT LITERAL1
HDC100X_8BIT LITERAL1

@ -1,22 +0,0 @@
#include <Wire.h>
#include <HDC100X.h>
HDC100X HDC1(0x43);
#define LED 13
bool state = false;
void setup(){
Serial.begin(9600);
HDC1.begin(HDC100X_TEMP_HUMI,HDC100X_14BIT,HDC100X_14BIT,DISABLE);
}
void loop(){
Serial.print(" Humidity: ");
Serial.print(HDC1.getHumi());
Serial.print("%, Temperature: ");
Serial.print(HDC1.getTemp());
Serial.println("C");
delay(500);
}

@ -1,25 +0,0 @@
#include <Wire.h>
#include <HDC100X.h>
HDC100X hdc;
#define LED 13
bool state = false;
void setup()
{
Serial.begin(9600);
hdc.begin(HDC100X_TEMP_HUMI,HDC100X_14BIT,HDC100X_14BIT,DISABLE);
}
void loop()
{
Serial.print(" Humidity: ");
Serial.print(hdc.getHumi());
Serial.print("%, Temperature: ");
Serial.print(hdc.getTemp());
Serial.println("C");
delay(500);
}

@ -1,22 +0,0 @@
#######################################
# Datatypes (KEYWORD1)
#######################################
HDC100X KEYWORD1
#######################################
# Methods and Functions (KEYWORD2)
#######################################
begin KEYWORD2
setAddr KEYWORD2
setDrPin KEYWORD2
setMode KEYWORD2
setHeater KEYWORD2
battLow KEYWORD2
getTemp KEYWORD2
getHumi KEYWORD2
getRawTemp KEYWORD2
getRawHumi KEYWORD2
getConfigReg KEYWORD2
read2Byte KEYWORD2
writeConfigData KEYWORD2

@ -1,365 +0,0 @@
Arduino-LMIC library
====================
This repository contains the IBM LMIC (LoraMAC-in-C) library, slightly
modified to run in the Arduino environment, allowing using the SX1272,
SX1276 tranceivers and compatible modules (such as some HopeRF RFM9x
modules).
This library mostly exposes the functions defined by LMIC, it makes no
attempt to wrap them in a higher level API that is more in the Arduino
style. To find out how to use the library itself, see the examples, or
see the PDF file in the doc subdirectory.
This library requires Arduino IDE version 1.6.6 or above, since it
requires C99 mode to be enabled by default.
Installing
----------
To install this library:
- install it using the Arduino Library manager ("Sketch" -> "Include
Library" -> "Manage Libraries..."), or
- download a zipfile from github using the "Download ZIP" button and
install it using the IDE ("Sketch" -> "Include Library" -> "Add .ZIP
Library..."
- clone this git repository into your sketchbook/libraries folder.
For more info, see https://www.arduino.cc/en/Guide/Libraries
Features
--------
The LMIC library provides a fairly complete LoRaWAN Class A and Class B
implementation, supporting the EU-868 and US-915 bands. Only a limited
number of features was tested using this port on Arduino hardware, so be
careful when using any of the untested features.
What certainly works:
- Sending packets uplink, taking into account duty cycling.
- Encryption and message integrity checking.
- Receiving downlink packets in the RX2 window.
- Custom frequencies and datarate settings.
- Over-the-air activation (OTAA / joining).
What has not been tested:
- Receiving downlink packets in the RX1 window.
- Receiving and processing MAC commands.
- Class B operation.
If you try one of these untested features and it works, be sure to let
us know (creating a github issue is probably the best way for that).
Configuration
-------------
A number of features can be configured or disabled by editing the
`config.h` file in the library folder. Unfortunately the Arduino
environment does not offer any way to do this (compile-time)
configuration from the sketch, so be careful to recheck your
configuration when you switch between sketches or update the library.
At the very least, you should set the right type of transceiver (SX1272
vs SX1276) in config.h, most other values should be fine at their
defaults.
Supported hardware
------------------
This library is intended to be used with plain LoRa transceivers,
connecting to them using SPI. In particular, the SX1272 and SX1276
families are supported (which should include SX1273, SX1277, SX1278 and
SX1279 which only differ in the available frequencies, bandwidths and
spreading factors). It has been tested with both SX1272 and SX1276
chips, using the Semtech SX1272 evaluation board and the HopeRF RFM92
and RFM95 boards (which supposedly contain an SX1272 and SX1276 chip
respectively).
This library contains a full LoRaWAN stack and is intended to drive
these Transceivers directly. It is *not* intended to be used with
full-stack devices like the Microchip RN2483 and the Embit LR1272E.
These contain a transceiver and microcontroller that implements the
LoRaWAN stack and exposes a high-level serial interface instead of the
low-level SPI transceiver interface.
This library is intended to be used inside the Arduino environment. It
should be architecture-independent, so it should run on "normal" AVR
arduinos, but also on the ARM-based ones, and some success has been seen
running on the ESP8266 board as well. It was tested on the Arduino Uno,
Pinoccio Scout, Teensy LC and 3.x, ESP8266, Arduino 101.
This library an be quite heavy, especially if the fairly small ATmega
328p (such as in the Arduino Uno) is used. In the default configuration,
the available 32K flash space is nearly filled up (this includes some
debug output overhead, though). By disabling some features in `config.h`
(like beacon tracking and ping slots, which are not typically needed),
some space can be freed up. Some work is underway to replace the AES
encryption implementation, which should free up another 8K or so of
flash in the future, making this library feasible to run on a 328p
microcontroller.
Connections
-----------
To make this library work, your Arduino (or whatever Arduino-compatible
board you are using) should be connected to the transceiver. The exact
connections are a bit dependent on the transceiver board and Arduino
used, so this section tries to explain what each connection is for and
in what cases it is (not) required.
Note that the SX1272 module runs at 3.3V and likely does not like 5V on
its pins (though the datasheet is not say anything about this, and my
transceiver did not obviously break after accidentally using 5V I/O for
a few hours). To be safe, make sure to use a level shifter, or an
Arduino running at 3.3V. The Semtech evaluation board has 100 ohm resistors in
series with all data lines that might prevent damage, but I would not
count on that.
### Power
The SX127x transceivers need a supply voltage between 1.8V and 3.9V.
Using a 3.3V supply is typical. Some modules have a single power pin
(like the HopeRF modules, labeled 3.3V) but others expose multiple power
pins for different parts (like the Semtech evaluation board that has
`VDD_RF`, `VDD_ANA` and `VDD_FEM`), which can all be connected together.
Any *GND* pins need to be connected to the Arduino *GND* pin(s).
### SPI
The primary way of communicating with the transceiver is through SPI
(Serial Peripheral Interface). This uses four pins: MOSI, MISO, SCK and
SS. The former three need to be directly connected: so MOSI to MOSI,
MISO to MISO, SCK to SCK. Where these pins are located on your Arduino
varies, see for example the "Connections" section of the [Arduino SPI
documentation](SPI).
The SS (slave select) connection is a bit more flexible. On the SPI
slave side (the transceiver), this must be connect to the pin
(typically) labeled *NSS*. On the SPI master (Arduino) side, this pin
can connect to any I/O pin. Most Arduinos also have a pin labeled "SS",
but this is only relevant when the Arduino works as an SPI slave, which
is not the case here. Whatever pin you pick, you need to tell the
library what pin you used through the pin mapping (see below).
[SPI]: https://www.arduino.cc/en/Reference/SPI
### DIO pins
The DIO (digitial I/O) pins on the transceiver board can be configured
for various functions. The LMIC library uses them to get instant status
information from the transceiver. For example, when a LoRa transmission
starts, the DIO0 pin is configured as a TxDone output. When the
transmission is complete, the DIO0 pin is made high by the transceiver,
which can be detected by the LMIC library.
The LMIC library needs only access to DIO0, DIO1 and DIO2, the other
DIOx pins can be left disconnected. On the Arduino side, they can
connect to any I/O pin, since the current implementation does not use
interrupts or other special hardware features (though this might be
added in the feature, see also the "Timing" section).
In LoRa mode the DIO pins are used as follows:
* DIO0: TxDone and RxDone
* DIO1: RxTimeout
In FSK mode they are used as follows::
* DIO0: PayloadReady and PacketSent
* DIO2: TimeOut
Both modes need only 2 pins, but the tranceiver does not allow mapping
them in such a way that all needed interrupts map to the same 2 pins.
So, if both LoRa and FSK modes are used, all three pins must be
connected.
The pins used on the Arduino side should be configured in the pin
mapping in your sketch (see below).
### Reset
The transceiver has a reset pin that can be used to explicitely reset
it. The LMIC library uses this to ensure the chip is in a consistent
state at startup. In practice, this pin can be left disconnected, since
the transceiver will already be in a sane state on power-on, but
connecting it might prevent problems in some cases.
On the Arduino side, any I/O pin can be used. The pin number used must
be configured in the pin mapping (see below).
### RXTX
The transceiver contains two separate antenna connections: One for RX
and one for TX. A typical transceiver board contains an antenna switch
chip, that allows switching a single antenna between these RX and TX
connections. Such a antenna switcher can typically be told what
position it should be through an input pin, often labeled *RXTX*.
The easiest way to control the antenna switch is to use the *RXTX* pin
on the SX127x transceiver. This pin is automatically set high during TX
and low during RX. For example, the HopeRF boards seem to have this
connection in place, so they do not expose any *RXTX* pins and the pin
can be marked as unused in the pin mapping.
Some boards do expose the antenna switcher pin, and sometimes also the
SX127x *RXTX* pin. For example, the SX1272 evaluation board calls the
former *FEM_CTX* and the latter *RXTX*. Again, simply connecting these
together with a jumper wire is the easiest solution.
Alternatively, or if the SX127x *RXTX* pin is not available, LMIC can be
configured to control the antenna switch. Connect the antenna switch
control pin (e.g. *FEM_CTX* on the Semtech evaluation board) to any I/O
pin on the Arduino side, and configure the pin used in the pin map (see
below). It is not entirely clear why would *not* want the transceiver to
control the antenna directly, though.
### Pin mapping
As described above, most connections can use arbitrary I/O pins on the
Arduino side. To tell the LMIC library about these, a pin mapping struct
is used in the sketch file.
For example, this could look like this:
lmic_pinmap lmic_pins = {
.nss = 6,
.rxtx = LMIC_UNUSED_PIN,
.rst = 5,
.dio = {2, 3, 4},
};
The names refer to the pins on the transceiver side, the numbers refer
to the Arduino pin numbers (to use the analog pins, use constants like
`A0`). For the DIO pins, the three numbers refer to DIO0, DIO1 and DIO2
respectively. Any pins that are not needed should be specified as
`LMIC_UNUSED_PIN`. The nss and dio0 pin is required, the others can
potentially left out (depending on the environments and requirements,
see the notes above for when a pin can or cannot be left out).
The name of this struct must always be `lmic_pins`, which is a special name
recognized by the library.
#### LoRa Nexus by Ideetron
This board uses the following pin mapping:
const lmic_pinmap lmic_pins = {
.nss = 10,
.rxtx = LMIC_UNUSED_PIN,
.rst = LMIC_UNUSED_PIN, // hardwired to AtMega RESET
.dio = {4, 5, 7},
};
Examples
--------
This library currently provides three examples:
- `ttn-abp.ino` shows a basic transmission of a "Hello, world!" message
using the LoRaWAN protocol. It contains some frequency settings and
encryption keys intended for use with The Things Network, but these
also correspond to the default settings of most gateways, so it
should work with other networks and gateways as well. This example
uses activation-by-personalization (ABP, preconfiguring a device
address and encryption keys), and does not employ over-the-air
activation.
Reception of packets (in response to transmission, using the RX1 and
RX2 receive windows is also supported).
- `ttn-otaa.ino` also sends a "Hello, world!" message, but uses over
the air activation (OTAA) to first join a network to establish a
session and security keys. This was tested with The Things Network,
but should also work (perhaps with some changes) for other networks.
- `raw.ino` shows how to access the radio on a somewhat low level,
and allows to send raw (non-LoRaWAN) packets between nodes directly.
This is useful to verify basic connectivity, and when no gateway is
available, but this example also bypasses duty cycle checks, so be
careful when changing the settings.
Timing
------
Unfortunately, the SX127x tranceivers do not support accurate
timekeeping themselves (there is a sequencer that is *almost* sufficient
for timing the RX1 and RX2 downlink windows, but that is only available
in FSK mode, not in LoRa mode). This means that the microcontroller is
responsible for keeping track of time. In particular, it should note
when a packet finished transmitting, so it can open up the RX1 and RX2
receive windows at a fixed time after the end of transmission.
This timing uses the Arduino `micros()` timer, which has a granularity
of 4μs and is based on the primary microcontroller clock. For timing
events, the tranceiver uses its DIOx pins as interrupt outputs. In the
current implementation, these pins are not handled by an actual
interrupt handler, but they are just polled once every LMIC loop,
resulting in a bit inaccuracy in the timestamping. Also, running
scheduled jobs (such as opening up the receive windows) is done using a
polling approach, which might also result in further delays.
Fortunately, LoRa is a fairly slow protocol and the timing of the
receive windows is not super critical. To synchronize transmitter and
receiver, a preamble is first transmitted. Using LoRaWAN, this preamble
consists of 8 symbols, of which the receiver needs to see 4 symbols to
lock on. The current implementation tries to enable the receiver for 5
symbol times at 1.5 symbol after the start of the receive window,
meaning that a inacurracy of plus or minus 2.5 symbol times should be
acceptable.
At the fastest LoRa setting supported by the tranceiver (SF5BW500) a
single preamble symbol takes 64μs, so the receive window timing should
be accurate within 160μs (for LoRaWAN this is SF7BW250, needing accuracy
within 1280μs). This is certainly within a crystal's accuracy, but using
the internal oscillator is probably not feasible (which is 1% - 10%
accurate, depending on calibration). This accuracy should also be
feasible with the polling approach used, provided that the LMIC loop is
run often enough.
It would be good to properly review this code at some point, since it
seems that in some places some offsets and corrections are applied that
might not be appropriate for the Arduino environment. So if reception is
not working, the timing is something to have a closer look at.
The LMIC library was intended to connect the DIO pins to interrupt
lines and run code inside the interrupt handler. However, doing this
opens up an entire can of worms with regard to doing SPI transfers
inside interrupt routines (some of which is solved by the Arduino
`beginTransaction()` API, but possibly not everything). One simpler
alternative could be to use an interrupt handler to just store a
timestamp, and then do the actual handling in the main loop (this
requires modifications of the library to pass a timestamp to the LMIC
`radio_irq_handler()` function).
An even more accurate solution could be to use a dedicated timer with an
input capture unit, that can store the timestamp of a change on the DIO0
pin (the only one that is timing-critical) entirely in hardware.
Unfortunately, timer0, as used by Arduino's `millis()` and `micros()`
functions does not seem to have an input capture unit, meaning a
separate timer is needed for this.
If the main microcontroller does not have a crystal, but uses the
internal oscillator, the clock output of the transceiver (on DIO5) could
be usable to drive this timer instead of the main microcontroller clock,
to ensure the receive window timing is sufficiently accurate. Ideally,
this would use timer2, which supports asynchronous mode (e.g. running
while the microcontroller is sleeping), but that timer does not have an
input capture unit. Timer1 has one, but it seems it will stop running
once the microcontroller sleeps. Running the microcontroller in idle
mode with a slower clock might be feasible, though. Instead of using the
main crystal oscillator of the transceiver, it could be possible to use
the transceiver's internal RC oscillator (which is calibrated against
the transceiver crystal), or to calibrate the microcontroller internal
RC oscillator using the transceiver's clkout. However, that datasheet is
a bit vague on the RC oscillator's accuracy and how to use it exactly
(some registers seem to be FSK-mode only), so this needs some
experiments.
Downlink datarate
-----------------
Note that the datarate used for downlink packets in the RX2 window
defaults to SF12BW125 according to the specification, but some networks
use different values (iot.semtech.com and The Things Network both use
SF9BW). When using personalized activate (ABP), it is your
responsibility to set the right settings, e.g. by adding this to your
sketch (after calling `LMIC_setSession`). `ttn-abp.ino` already does
this.
LMIC.dn2Dr = DR_SF9;
When using OTAA, the network communicates the RX2 settings in the
join accept message, but the LMIC library does not currently process
these settings. Until that is solved (see issue #20), you should
manually set the RX2 rate, *after* joining (see the handling of
`EV_JOINED` in the `ttn-otaa.ino` for an example.
License
-------
Most source files in this repository are made available under the
Eclipse Public License v1.0. The examples which use a more liberal
license. Some of the AES code is available under the LGPL. Refer to each
individual source file for more details.

@ -1,4 +0,0 @@
DISCLAIMER:
Please note that the software is provided AS IS and we cannot
provide support for optimizations, adaptations, integration,
ports to other platforms or device drivers!

@ -1,28 +0,0 @@
==============================================================================
LMIC VERSION 1.4 (17-Mar-2015)
-------------------------------
- changed API: inverted port indicator flag in LMIC.txrxFlags
(now TXRX_PORT, previously TXRX_NOPORT)
- fixed offset OFF_CFLIST constant
- changed CRC-16 algorithm for beacons to CCITT(XMODEM) polynomial
- fixed radio driver (low data rate optimization for SF11+SF12 only for BW125)
- fixed timer rollover handling in job queue
==============================================================================
LMIC VERSION 1.5 (8-May-2015)
------------------------------
- fixed condition in convFreq()
- fixed freq*100 bug and freq==0 bug for CFList
- fixed TX scheduling bug
- better support for GNU compiler toolchain
==============================================================================

@ -1,162 +0,0 @@
/*******************************************************************************
* Copyright (c) 2015 Matthijs Kooijman
*
* Permission is hereby granted, free of charge, to anyone
* obtaining a copy of this document and accompanying files,
* to do whatever they want with them without any restriction,
* including, but not limited to, copying, modification and redistribution.
* NO WARRANTY OF ANY KIND IS PROVIDED.
*
* This example transmits data on hardcoded channel and receives data
* when not transmitting. Running this sketch on two nodes should allow
* them to communicate.
*******************************************************************************/
#include <lmic.h>
#include <hal/hal.h>
#include <SPI.h>
#if !defined(DISABLE_INVERT_IQ_ON_RX)
#error This example requires DISABLE_INVERT_IQ_ON_RX to be set. Update \
config.h in the lmic library to set it.
#endif
// How often to send a packet. Note that this sketch bypasses the normal
// LMIC duty cycle limiting, so when you change anything in this sketch
// (payload length, frequency, spreading factor), be sure to check if
// this interval should not also be increased.
// See this spreadsheet for an easy airtime and duty cycle calculator:
// https://docs.google.com/spreadsheets/d/1voGAtQAjC1qBmaVuP1ApNKs1ekgUjavHuVQIXyYSvNc
#define TX_INTERVAL 2000
// Pin mapping
const lmic_pinmap lmic_pins = {
.nss = 6,
.rxtx = LMIC_UNUSED_PIN,
.rst = 5,
.dio = {2, 3, 4},
};
// These callbacks are only used in over-the-air activation, so they are
// left empty here (we cannot leave them out completely unless
// DISABLE_JOIN is set in config.h, otherwise the linker will complain).
void os_getArtEui (u1_t* buf) { }
void os_getDevEui (u1_t* buf) { }
void os_getDevKey (u1_t* buf) { }
void onEvent (ev_t ev) {
}
osjob_t txjob;
osjob_t timeoutjob;
static void tx_func (osjob_t* job);
// Transmit the given string and call the given function afterwards
void tx(const char *str, osjobcb_t func) {
os_radio(RADIO_RST); // Stop RX first
delay(1); // Wait a bit, without this os_radio below asserts, apparently because the state hasn't changed yet
LMIC.dataLen = 0;
while (*str)
LMIC.frame[LMIC.dataLen++] = *str++;
LMIC.osjob.func = func;
os_radio(RADIO_TX);
Serial.println("TX");
}
// Enable rx mode and call func when a packet is received
void rx(osjobcb_t func) {
LMIC.osjob.func = func;
LMIC.rxtime = os_getTime(); // RX _now_
// Enable "continuous" RX (e.g. without a timeout, still stops after
// receiving a packet)
os_radio(RADIO_RXON);
Serial.println("RX");
}
static void rxtimeout_func(osjob_t *job) {
digitalWrite(LED_BUILTIN, LOW); // off
}
static void rx_func (osjob_t* job) {
// Blink once to confirm reception and then keep the led on
digitalWrite(LED_BUILTIN, LOW); // off
delay(10);
digitalWrite(LED_BUILTIN, HIGH); // on
// Timeout RX (i.e. update led status) after 3 periods without RX
os_setTimedCallback(&timeoutjob, os_getTime() + ms2osticks(3*TX_INTERVAL), rxtimeout_func);
// Reschedule TX so that it should not collide with the other side's
// next TX
os_setTimedCallback(&txjob, os_getTime() + ms2osticks(TX_INTERVAL/2), tx_func);
Serial.print("Got ");
Serial.print(LMIC.dataLen);
Serial.println(" bytes");
Serial.write(LMIC.frame, LMIC.dataLen);
Serial.println();
// Restart RX
rx(rx_func);
}
static void txdone_func (osjob_t* job) {
rx(rx_func);
}
// log text to USART and toggle LED
static void tx_func (osjob_t* job) {
// say hello
tx("Hello, world!", txdone_func);
// reschedule job every TX_INTERVAL (plus a bit of random to prevent
// systematic collisions), unless packets are received, then rx_func
// will reschedule at half this time.
os_setTimedCallback(job, os_getTime() + ms2osticks(TX_INTERVAL + random(500)), tx_func);
}
// application entry point
void setup() {
Serial.begin(115200);
Serial.println("Starting");
#ifdef VCC_ENABLE
// For Pinoccio Scout boards
pinMode(VCC_ENABLE, OUTPUT);
digitalWrite(VCC_ENABLE, HIGH);
delay(1000);
#endif
pinMode(LED_BUILTIN, OUTPUT);
// initialize runtime env
os_init();
// Set up these settings once, and use them for both TX and RX
#if defined(CFG_eu868)
// Use a frequency in the g3 which allows 10% duty cycling.
LMIC.freq = 869525000;
#elif defined(CFG_us915)
LMIC.freq = 902300000;
#endif
// Maximum TX power
LMIC.txpow = 27;
// Use a medium spread factor. This can be increased up to SF12 for
// better range, but then the interval should be (significantly)
// lowered to comply with duty cycle limits as well.
LMIC.datarate = DR_SF9;
// This sets CR 4/5, BW125 (except for DR_SF7B, which uses BW250)
LMIC.rps = updr2rps(LMIC.datarate);
Serial.println("Started");
Serial.flush();
// setup initial job
os_setCallback(&txjob, tx_func);
}
void loop() {
// execute scheduled jobs and events
os_runloop_once();
}

@ -1,226 +0,0 @@
/*******************************************************************************
* Copyright (c) 2015 Thomas Telkamp and Matthijs Kooijman
*
* Permission is hereby granted, free of charge, to anyone
* obtaining a copy of this document and accompanying files,
* to do whatever they want with them without any restriction,
* including, but not limited to, copying, modification and redistribution.
* NO WARRANTY OF ANY KIND IS PROVIDED.
*
* This example sends a valid LoRaWAN packet with payload "Hello,
* world!", using frequency and encryption settings matching those of
* the The Things Network.
*
* This uses ABP (Activation-by-personalisation), where a DevAddr and
* Session keys are preconfigured (unlike OTAA, where a DevEUI and
* application key is configured, while the DevAddr and session keys are
* assigned/generated in the over-the-air-activation procedure).
*
* Note: LoRaWAN per sub-band duty-cycle limitation is enforced (1% in
* g1, 0.1% in g2), but not the TTN fair usage policy (which is probably
* violated by this sketch when left running for longer)!
*
* To use this sketch, first register your application and device with
* the things network, to set or generate a DevAddr, NwkSKey and
* AppSKey. Each device should have their own unique values for these
* fields.
*
* Do not forget to define the radio type correctly in config.h.
*
*******************************************************************************/
#include <lmic.h>
#include <hal/hal.h>
#include <SPI.h>
// LoRaWAN NwkSKey, network session key
// This is the default Semtech key, which is used by the early prototype TTN
// network.
static const PROGMEM u1_t NWKSKEY[16] = { 0x2B, 0x7E, 0x15, 0x16, 0x28, 0xAE, 0xD2, 0xA6, 0xAB, 0xF7, 0x15, 0x88, 0x09, 0xCF, 0x4F, 0x3C };
// LoRaWAN AppSKey, application session key
// This is the default Semtech key, which is used by the early prototype TTN
// network.
static const u1_t PROGMEM APPSKEY[16] = { 0x2B, 0x7E, 0x15, 0x16, 0x28, 0xAE, 0xD2, 0xA6, 0xAB, 0xF7, 0x15, 0x88, 0x09, 0xCF, 0x4F, 0x3C };
// LoRaWAN end-device address (DevAddr)
static const u4_t DEVADDR = 0x03FF0001 ; // <-- Change this address for every node!
// These callbacks are only used in over-the-air activation, so they are
// left empty here (we cannot leave them out completely unless
// DISABLE_JOIN is set in config.h, otherwise the linker will complain).
void os_getArtEui (u1_t* buf) { }
void os_getDevEui (u1_t* buf) { }
void os_getDevKey (u1_t* buf) { }
static uint8_t mydata[] = "Hello, world!";
static osjob_t sendjob;
// Schedule TX every this many seconds (might become longer due to duty
// cycle limitations).
const unsigned TX_INTERVAL = 60;
// Pin mapping
const lmic_pinmap lmic_pins = {
.nss = 6,
.rxtx = LMIC_UNUSED_PIN,
.rst = 5,
.dio = {2, 3, 4},
};
void onEvent (ev_t ev) {
Serial.print(os_getTime());
Serial.print(": ");
switch(ev) {
case EV_SCAN_TIMEOUT:
Serial.println(F("EV_SCAN_TIMEOUT"));
break;
case EV_BEACON_FOUND:
Serial.println(F("EV_BEACON_FOUND"));
break;
case EV_BEACON_MISSED:
Serial.println(F("EV_BEACON_MISSED"));
break;
case EV_BEACON_TRACKED:
Serial.println(F("EV_BEACON_TRACKED"));
break;
case EV_JOINING:
Serial.println(F("EV_JOINING"));
break;
case EV_JOINED:
Serial.println(F("EV_JOINED"));
break;
case EV_RFU1:
Serial.println(F("EV_RFU1"));
break;
case EV_JOIN_FAILED:
Serial.println(F("EV_JOIN_FAILED"));
break;
case EV_REJOIN_FAILED:
Serial.println(F("EV_REJOIN_FAILED"));
break;
case EV_TXCOMPLETE:
Serial.println(F("EV_TXCOMPLETE (includes waiting for RX windows)"));
if (LMIC.txrxFlags & TXRX_ACK)
Serial.println(F("Received ack"));
if (LMIC.dataLen) {
Serial.println(F("Received "));
Serial.println(LMIC.dataLen);
Serial.println(F(" bytes of payload"));
}
// Schedule next transmission
os_setTimedCallback(&sendjob, os_getTime()+sec2osticks(TX_INTERVAL), do_send);
break;
case EV_LOST_TSYNC:
Serial.println(F("EV_LOST_TSYNC"));
break;
case EV_RESET:
Serial.println(F("EV_RESET"));
break;
case EV_RXCOMPLETE:
// data received in ping slot
Serial.println(F("EV_RXCOMPLETE"));
break;
case EV_LINK_DEAD:
Serial.println(F("EV_LINK_DEAD"));
break;
case EV_LINK_ALIVE:
Serial.println(F("EV_LINK_ALIVE"));
break;
default:
Serial.println(F("Unknown event"));
break;
}
}
void do_send(osjob_t* j){
// Check if there is not a current TX/RX job running
if (LMIC.opmode & OP_TXRXPEND) {
Serial.println(F("OP_TXRXPEND, not sending"));
} else {
// Prepare upstream data transmission at the next possible time.
LMIC_setTxData2(1, mydata, sizeof(mydata)-1, 0);
Serial.println(F("Packet queued"));
}
// Next TX is scheduled after TX_COMPLETE event.
}
void setup() {
Serial.begin(115200);
Serial.println(F("Starting"));
#ifdef VCC_ENABLE
// For Pinoccio Scout boards
pinMode(VCC_ENABLE, OUTPUT);
digitalWrite(VCC_ENABLE, HIGH);
delay(1000);
#endif
// LMIC init
os_init();
// Reset the MAC state. Session and pending data transfers will be discarded.
LMIC_reset();
// Set static session parameters. Instead of dynamically establishing a session
// by joining the network, precomputed session parameters are be provided.
#ifdef PROGMEM
// On AVR, these values are stored in flash and only copied to RAM
// once. Copy them to a temporary buffer here, LMIC_setSession will
// copy them into a buffer of its own again.
uint8_t appskey[sizeof(APPSKEY)];
uint8_t nwkskey[sizeof(NWKSKEY)];
memcpy_P(appskey, APPSKEY, sizeof(APPSKEY));
memcpy_P(nwkskey, NWKSKEY, sizeof(NWKSKEY));
LMIC_setSession (0x1, DEVADDR, nwkskey, appskey);
#else
// If not running an AVR with PROGMEM, just use the arrays directly
LMIC_setSession (0x1, DEVADDR, NWKSKEY, APPSKEY);
#endif
#if defined(CFG_eu868)
// Set up the channels used by the Things Network, which corresponds
// to the defaults of most gateways. Without this, only three base
// channels from the LoRaWAN specification are used, which certainly
// works, so it is good for debugging, but can overload those
// frequencies, so be sure to configure the full frequency range of
// your network here (unless your network autoconfigures them).
// Setting up channels should happen after LMIC_setSession, as that
// configures the minimal channel set.
// NA-US channels 0-71 are configured automatically
LMIC_setupChannel(0, 868100000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(1, 868300000, DR_RANGE_MAP(DR_SF12, DR_SF7B), BAND_CENTI); // g-band
LMIC_setupChannel(2, 868500000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(3, 867100000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(4, 867300000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(5, 867500000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(6, 867700000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(7, 867900000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(8, 868800000, DR_RANGE_MAP(DR_FSK, DR_FSK), BAND_MILLI); // g2-band
// TTN defines an additional channel at 869.525Mhz using SF9 for class B
// devices' ping slots. LMIC does not have an easy way to define set this
// frequency and support for class B is spotty and untested, so this
// frequency is not configured here.
#elif defined(CFG_us915)
// NA-US channels 0-71 are configured automatically
// but only one group of 8 should (a subband) should be active
// TTN recommends the second sub band, 1 in a zero based count.
// https://github.com/TheThingsNetwork/gateway-conf/blob/master/US-global_conf.json
LMIC_selectSubBand(1);
#endif
// Disable link check validation
LMIC_setLinkCheckMode(0);
// TTN uses SF9 for its RX2 window.
LMIC.dn2Dr = DR_SF9;
// Set data rate and transmit power for uplink (note: txpow seems to be ignored by the library)
LMIC_setDrTxpow(DR_SF7,14);
// Start job
do_send(&sendjob);
}
void loop() {
os_runloop_once();
}

@ -1,173 +0,0 @@
/*******************************************************************************
* Copyright (c) 2015 Thomas Telkamp and Matthijs Kooijman
*
* Permission is hereby granted, free of charge, to anyone
* obtaining a copy of this document and accompanying files,
* to do whatever they want with them without any restriction,
* including, but not limited to, copying, modification and redistribution.
* NO WARRANTY OF ANY KIND IS PROVIDED.
*
* This example sends a valid LoRaWAN packet with payload "Hello,
* world!", using frequency and encryption settings matching those of
* the The Things Network.
*
* This uses OTAA (Over-the-air activation), where where a DevEUI and
* application key is configured, which are used in an over-the-air
* activation procedure where a DevAddr and session keys are
* assigned/generated for use with all further communication.
*
* Note: LoRaWAN per sub-band duty-cycle limitation is enforced (1% in
* g1, 0.1% in g2), but not the TTN fair usage policy (which is probably
* violated by this sketch when left running for longer)!
* To use this sketch, first register your application and device with
* the things network, to set or generate an AppEUI, DevEUI and AppKey.
* Multiple devices can use the same AppEUI, but each device has its own
* DevEUI and AppKey.
*
* Do not forget to define the radio type correctly in config.h.
*
*******************************************************************************/
#include <lmic.h>
#include <hal/hal.h>
#include <SPI.h>
// This EUI must be in little-endian format, so least-significant-byte
// first. When copying an EUI from ttnctl output, this means to reverse
// the bytes. For TTN issued EUIs the last bytes should be 0xD5, 0xB3,
// 0x70.
static const u1_t PROGMEM APPEUI[8]={ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
void os_getArtEui (u1_t* buf) { memcpy_P(buf, APPEUI, 8);}
// This should also be in little endian format, see above.
static const u1_t PROGMEM DEVEUI[8]={ 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
void os_getDevEui (u1_t* buf) { memcpy_P(buf, DEVEUI, 8);}
// This key should be in big endian format (or, since it is not really a
// number but a block of memory, endianness does not really apply). In
// practice, a key taken from ttnctl can be copied as-is.
// The key shown here is the semtech default key.
static const u1_t PROGMEM APPKEY[16] = { 0x2B, 0x7E, 0x15, 0x16, 0x28, 0xAE, 0xD2, 0xA6, 0xAB, 0xF7, 0x15, 0x88, 0x09, 0xCF, 0x4F, 0x3C };
void os_getDevKey (u1_t* buf) { memcpy_P(buf, APPKEY, 16);}
static uint8_t mydata[] = "Hello, world!";
static osjob_t sendjob;
// Schedule TX every this many seconds (might become longer due to duty
// cycle limitations).
const unsigned TX_INTERVAL = 60;
// Pin mapping
const lmic_pinmap lmic_pins = {
.nss = 6,
.rxtx = LMIC_UNUSED_PIN,
.rst = 5,
.dio = {2, 3, 4},
};
void onEvent (ev_t ev) {
Serial.print(os_getTime());
Serial.print(": ");
switch(ev) {
case EV_SCAN_TIMEOUT:
Serial.println(F("EV_SCAN_TIMEOUT"));
break;
case EV_BEACON_FOUND:
Serial.println(F("EV_BEACON_FOUND"));
break;
case EV_BEACON_MISSED:
Serial.println(F("EV_BEACON_MISSED"));
break;
case EV_BEACON_TRACKED:
Serial.println(F("EV_BEACON_TRACKED"));
break;
case EV_JOINING:
Serial.println(F("EV_JOINING"));
break;
case EV_JOINED:
Serial.println(F("EV_JOINED"));
// Disable link check validation (automatically enabled
// during join, but not supported by TTN at this time).
LMIC_setLinkCheckMode(0);
break;
case EV_RFU1:
Serial.println(F("EV_RFU1"));
break;
case EV_JOIN_FAILED:
Serial.println(F("EV_JOIN_FAILED"));
break;
case EV_REJOIN_FAILED:
Serial.println(F("EV_REJOIN_FAILED"));
break;
break;
case EV_TXCOMPLETE:
Serial.println(F("EV_TXCOMPLETE (includes waiting for RX windows)"));
if (LMIC.txrxFlags & TXRX_ACK)
Serial.println(F("Received ack"));
if (LMIC.dataLen) {
Serial.println(F("Received "));
Serial.println(LMIC.dataLen);
Serial.println(F(" bytes of payload"));
}
// Schedule next transmission
os_setTimedCallback(&sendjob, os_getTime()+sec2osticks(TX_INTERVAL), do_send);
break;
case EV_LOST_TSYNC:
Serial.println(F("EV_LOST_TSYNC"));
break;
case EV_RESET:
Serial.println(F("EV_RESET"));
break;
case EV_RXCOMPLETE:
// data received in ping slot
Serial.println(F("EV_RXCOMPLETE"));
break;
case EV_LINK_DEAD:
Serial.println(F("EV_LINK_DEAD"));
break;
case EV_LINK_ALIVE:
Serial.println(F("EV_LINK_ALIVE"));
break;
default:
Serial.println(F("Unknown event"));
break;
}
}
void do_send(osjob_t* j){
// Check if there is not a current TX/RX job running
if (LMIC.opmode & OP_TXRXPEND) {
Serial.println(F("OP_TXRXPEND, not sending"));
} else {
// Prepare upstream data transmission at the next possible time.
LMIC_setTxData2(1, mydata, sizeof(mydata)-1, 0);
Serial.println(F("Packet queued"));
}
// Next TX is scheduled after TX_COMPLETE event.
}
void setup() {
Serial.begin(9600);
Serial.println(F("Starting"));
#ifdef VCC_ENABLE
// For Pinoccio Scout boards
pinMode(VCC_ENABLE, OUTPUT);
digitalWrite(VCC_ENABLE, HIGH);
delay(1000);
#endif
// LMIC init
os_init();
// Reset the MAC state. Session and pending data transfers will be discarded.
LMIC_reset();
// Start job (sending automatically starts OTAA too)
do_send(&sendjob);
}
void loop() {
os_runloop_once();
}

@ -1,207 +0,0 @@
/*******************************************************************************
* Copyright (c) 2015 Thomas Telkamp and Matthijs Kooijman
*
* Permission is hereby granted, free of charge, to anyone
* obtaining a copy of this document and accompanying files,
* to do whatever they want with them without any restriction,
* including, but not limited to, copying, modification and redistribution.
* NO WARRANTY OF ANY KIND IS PROVIDED.
*
* This example sends a valid LoRaWAN packet with payload "Hello,
* world!", using frequency and encryption settings matching those of
* the (early prototype version of) The Things Network.
*
* Note: LoRaWAN per sub-band duty-cycle limitation is enforced (1% in g1,
* 0.1% in g2).
*
* Change DEVADDR to a unique address!
* See http://thethingsnetwork.org/wiki/AddressSpace
*
* Do not forget to define the radio type correctly in config.h.
*
*******************************************************************************/
#include <lmic.h>
#include <hal/hal.h>
#include <SPI.h>
// LoRaWAN NwkSKey, network session key
// This is the default Semtech key, which is used by the prototype TTN
// network initially.
static const PROGMEM u1_t NWKSKEY[16] = { 0x2B, 0x7E, 0x15, 0x16, 0x28, 0xAE, 0xD2, 0xA6, 0xAB, 0xF7, 0x15, 0x88, 0x09, 0xCF, 0x4F, 0x3C };
// LoRaWAN AppSKey, application session key
// This is the default Semtech key, which is used by the prototype TTN
// network initially.
static const u1_t PROGMEM APPSKEY[16] = { 0x2B, 0x7E, 0x15, 0x16, 0x28, 0xAE, 0xD2, 0xA6, 0xAB, 0xF7, 0x15, 0x88, 0x09, 0xCF, 0x4F, 0x3C };
// LoRaWAN end-device address (DevAddr)
// See http://thethingsnetwork.org/wiki/AddressSpace
static const u4_t DEVADDR = 0x03FF0001 ; // <-- Change this address for every node!
// These callbacks are only used in over-the-air activation, so they are
// left empty here (we cannot leave them out completely unless
// DISABLE_JOIN is set in config.h, otherwise the linker will complain).
void os_getArtEui (u1_t* buf) { }
void os_getDevEui (u1_t* buf) { }
void os_getDevKey (u1_t* buf) { }
static uint8_t mydata[] = "Hello, world!";
static osjob_t sendjob;
// Schedule TX every this many seconds (might become longer due to duty
// cycle limitations).
const unsigned TX_INTERVAL = 60;
// Pin mapping
const lmic_pinmap lmic_pins = {
.nss = 6,
.rxtx = LMIC_UNUSED_PIN,
.rst = 5,
.dio = {2, 3, 4},
};
void onEvent (ev_t ev) {
Serial.print(os_getTime());
Serial.print(": ");
switch(ev) {
case EV_SCAN_TIMEOUT:
Serial.println(F("EV_SCAN_TIMEOUT"));
break;
case EV_BEACON_FOUND:
Serial.println(F("EV_BEACON_FOUND"));
break;
case EV_BEACON_MISSED:
Serial.println(F("EV_BEACON_MISSED"));
break;
case EV_BEACON_TRACKED:
Serial.println(F("EV_BEACON_TRACKED"));
break;
case EV_JOINING:
Serial.println(F("EV_JOINING"));
break;
case EV_JOINED:
Serial.println(F("EV_JOINED"));
break;
case EV_RFU1:
Serial.println(F("EV_RFU1"));
break;
case EV_JOIN_FAILED:
Serial.println(F("EV_JOIN_FAILED"));
break;
case EV_REJOIN_FAILED:
Serial.println(F("EV_REJOIN_FAILED"));
break;
break;
case EV_TXCOMPLETE:
Serial.println(F("EV_TXCOMPLETE (includes waiting for RX windows)"));
if(LMIC.dataLen) {
// data received in rx slot after tx
Serial.print(F("Data Received: "));
Serial.write(LMIC.frame+LMIC.dataBeg, LMIC.dataLen);
Serial.println();
}
// Schedule next transmission
os_setTimedCallback(&sendjob, os_getTime()+sec2osticks(TX_INTERVAL), do_send);
break;
case EV_LOST_TSYNC:
Serial.println(F("EV_LOST_TSYNC"));
break;
case EV_RESET:
Serial.println(F("EV_RESET"));
break;
case EV_RXCOMPLETE:
// data received in ping slot
Serial.println(F("EV_RXCOMPLETE"));
break;
case EV_LINK_DEAD:
Serial.println(F("EV_LINK_DEAD"));
break;
case EV_LINK_ALIVE:
Serial.println(F("EV_LINK_ALIVE"));
break;
default:
Serial.println(F("Unknown event"));
break;
}
}
void do_send(osjob_t* j){
// Check if there is not a current TX/RX job running
if (LMIC.opmode & OP_TXRXPEND) {
Serial.println(F("OP_TXRXPEND, not sending"));
} else {
// Prepare upstream data transmission at the next possible time.
LMIC_setTxData2(1, mydata, sizeof(mydata)-1, 0);
Serial.println(F("Packet queued"));
}
// Next TX is scheduled after TX_COMPLETE event.
}
void setup() {
Serial.begin(115200);
Serial.println(F("Starting"));
#ifdef VCC_ENABLE
// For Pinoccio Scout boards
pinMode(VCC_ENABLE, OUTPUT);
digitalWrite(VCC_ENABLE, HIGH);
delay(1000);
#endif
// LMIC init
os_init();
// Reset the MAC state. Session and pending data transfers will be discarded.
LMIC_reset();
// Set static session parameters. Instead of dynamically establishing a session
// by joining the network, precomputed session parameters are be provided.
#ifdef PROGMEM
// On AVR, these values are stored in flash and only copied to RAM
// once. Copy them to a temporary buffer here, LMIC_setSession will
// copy them into a buffer of its own again.
uint8_t appskey[sizeof(APPSKEY)];
uint8_t nwkskey[sizeof(NWKSKEY)];
memcpy_P(appskey, APPSKEY, sizeof(APPSKEY));
memcpy_P(nwkskey, NWKSKEY, sizeof(NWKSKEY));
LMIC_setSession (0x1, DEVADDR, nwkskey, appskey);
#else
// If not running an AVR with PROGMEM, just use the arrays directly
LMIC_setSession (0x1, DEVADDR, NWKSKEY, APPSKEY);
#endif
// Set up the channels used by the Things Network, which corresponds
// to the defaults of most gateways. Without this, only three base
// channels from the LoRaWAN specification are used, which certainly
// works, so it is good for debugging, but can overload those
// frequencies, so be sure to configure the full frequency range of
// your network here (unless your network autoconfigures them).
// Setting up channels should happen after LMIC_setSession, as that
// configures the minimal channel set.
LMIC_setupChannel(0, 868100000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(1, 868300000, DR_RANGE_MAP(DR_SF12, DR_SF7B), BAND_CENTI); // g-band
LMIC_setupChannel(2, 868500000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(3, 867100000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(4, 867300000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(5, 867500000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(6, 867700000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(7, 867900000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(8, 868800000, DR_RANGE_MAP(DR_FSK, DR_FSK), BAND_MILLI); // g2-band
// TTN defines an additional channel at 869.525Mhz using SF9 for class B
// devices' ping slots. LMIC does not have an easy way to define set this
// frequency and support for class B is spotty and untested, so this
// frequency is not configured here.
// Disable link check validation
LMIC_setLinkCheckMode(0);
// Set data rate and transmit power (note: txpow seems to be ignored by the library)
LMIC_setDrTxpow(DR_SF7,14);
// Start job
do_send(&sendjob);
}
void loop() {
os_runloop_once();
}

@ -1,9 +0,0 @@
name=IBM LMIC framework
version=1.5.0+arduino-1
author=IBM
maintainer=Matthijs Kooijman <matthijs@stdin.nl>
sentence=Arduino port of the LMIC (LoraWAN-in-C, formerly LoraMAC-in-C) framework provided by IBM.
paragraph=Supports SX1272/SX1276 and HopeRF RFM92/RFM95 tranceivers
category=Communication
url=http://www.research.ibm.com/labs/zurich/ics/lrsc/lmic.html
architectures=*

@ -1,342 +0,0 @@
/******************************************************************************************
#if defined(USE_IDEETRON_AES)
* Copyright 2015, 2016 Ideetron B.V.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
******************************************************************************************/
/******************************************************************************************
*
* File: AES-128_V10.cpp
* Author: Gerben den Hartog
* Compagny: Ideetron B.V.
* Website: http://www.ideetron.nl/LoRa
* E-mail: info@ideetron.nl
******************************************************************************************/
/****************************************************************************************
*
* Created on: 20-10-2015
* Supported Hardware: ID150119-02 Nexus board with RFM95
*
* Firmware Version 1.0
* First version
****************************************************************************************/
// This file was taken from
// https://github.com/Ideetron/RFM95W_Nexus/tree/master/LoRaWAN_V31 for
// use with LMIC. It was only cosmetically modified:
// - AES_Encrypt was renamed to lmic_aes_encrypt.
// - All other functions and variables were made static
// - Tabs were converted to 2 spaces
// - An #include and #if guard was added
// - S_Table is now stored in PROGMEM
#include "../../lmic/oslmic.h"
#if defined(USE_IDEETRON_AES)
/*
********************************************************************************************
* Global Variables
********************************************************************************************
*/
static unsigned char State[4][4];
static CONST_TABLE(unsigned char, S_Table)[16][16] = {
{0x63,0x7C,0x77,0x7B,0xF2,0x6B,0x6F,0xC5,0x30,0x01,0x67,0x2B,0xFE,0xD7,0xAB,0x76},
{0xCA,0x82,0xC9,0x7D,0xFA,0x59,0x47,0xF0,0xAD,0xD4,0xA2,0xAF,0x9C,0xA4,0x72,0xC0},
{0xB7,0xFD,0x93,0x26,0x36,0x3F,0xF7,0xCC,0x34,0xA5,0xE5,0xF1,0x71,0xD8,0x31,0x15},
{0x04,0xC7,0x23,0xC3,0x18,0x96,0x05,0x9A,0x07,0x12,0x80,0xE2,0xEB,0x27,0xB2,0x75},
{0x09,0x83,0x2C,0x1A,0x1B,0x6E,0x5A,0xA0,0x52,0x3B,0xD6,0xB3,0x29,0xE3,0x2F,0x84},
{0x53,0xD1,0x00,0xED,0x20,0xFC,0xB1,0x5B,0x6A,0xCB,0xBE,0x39,0x4A,0x4C,0x58,0xCF},
{0xD0,0xEF,0xAA,0xFB,0x43,0x4D,0x33,0x85,0x45,0xF9,0x02,0x7F,0x50,0x3C,0x9F,0xA8},
{0x51,0xA3,0x40,0x8F,0x92,0x9D,0x38,0xF5,0xBC,0xB6,0xDA,0x21,0x10,0xFF,0xF3,0xD2},
{0xCD,0x0C,0x13,0xEC,0x5F,0x97,0x44,0x17,0xC4,0xA7,0x7E,0x3D,0x64,0x5D,0x19,0x73},
{0x60,0x81,0x4F,0xDC,0x22,0x2A,0x90,0x88,0x46,0xEE,0xB8,0x14,0xDE,0x5E,0x0B,0xDB},
{0xE0,0x32,0x3A,0x0A,0x49,0x06,0x24,0x5C,0xC2,0xD3,0xAC,0x62,0x91,0x95,0xE4,0x79},
{0xE7,0xC8,0x37,0x6D,0x8D,0xD5,0x4E,0xA9,0x6C,0x56,0xF4,0xEA,0x65,0x7A,0xAE,0x08},
{0xBA,0x78,0x25,0x2E,0x1C,0xA6,0xB4,0xC6,0xE8,0xDD,0x74,0x1F,0x4B,0xBD,0x8B,0x8A},
{0x70,0x3E,0xB5,0x66,0x48,0x03,0xF6,0x0E,0x61,0x35,0x57,0xB9,0x86,0xC1,0x1D,0x9E},
{0xE1,0xF8,0x98,0x11,0x69,0xD9,0x8E,0x94,0x9B,0x1E,0x87,0xE9,0xCE,0x55,0x28,0xDF},
{0x8C,0xA1,0x89,0x0D,0xBF,0xE6,0x42,0x68,0x41,0x99,0x2D,0x0F,0xB0,0x54,0xBB,0x16}
};
extern "C" void lmic_aes_encrypt(unsigned char *Data, unsigned char *Key);
static void AES_Add_Round_Key(unsigned char *Round_Key);
static unsigned char AES_Sub_Byte(unsigned char Byte);
static void AES_Shift_Rows();
static void AES_Mix_Collums();
static void AES_Calculate_Round_Key(unsigned char Round, unsigned char *Round_Key);
static void Send_State();
/*
*****************************************************************************************
* Description : Function for encrypting data using AES-128
*
* Arguments : *Data Data to encrypt is a 16 byte long arry
* *Key Key to encrypt data with is a 16 byte long arry
*****************************************************************************************
*/
void lmic_aes_encrypt(unsigned char *Data, unsigned char *Key)
{
unsigned char i;
unsigned char Row,Collum;
unsigned char Round = 0x00;
unsigned char Round_Key[16];
//Copy input to State arry
for(Collum = 0; Collum < 4; Collum++)
{
for(Row = 0; Row < 4; Row++)
{
State[Row][Collum] = Data[Row + (4*Collum)];
}
}
//Copy key to round key
for(i = 0; i < 16; i++)
{
Round_Key[i] = Key[i];
}
//Add round key
AES_Add_Round_Key(Round_Key);
//Preform 9 full rounds
for(Round = 1; Round < 10; Round++)
{
//Preform Byte substitution with S table
for(Collum = 0; Collum < 4; Collum++)
{
for(Row = 0; Row < 4; Row++)
{
State[Row][Collum] = AES_Sub_Byte(State[Row][Collum]);
}
}
//Preform Row Shift
AES_Shift_Rows();
//Mix Collums
AES_Mix_Collums();
//Calculate new round key
AES_Calculate_Round_Key(Round,Round_Key);
//Add round key
AES_Add_Round_Key(Round_Key);
}
//Last round whitout mix collums
//Preform Byte substitution with S table
for(Collum = 0; Collum < 4; Collum++)
{
for(Row = 0; Row < 4; Row++)
{
State[Row][Collum] = AES_Sub_Byte(State[Row][Collum]);
}
}
//Shift rows
AES_Shift_Rows();
//Calculate new round key
AES_Calculate_Round_Key(Round,Round_Key);
//Add round Key
AES_Add_Round_Key(Round_Key);
//Copy the State into the data array
for(Collum = 0; Collum < 4; Collum++)
{
for(Row = 0; Row < 4; Row++)
{
Data[Row + (4*Collum)] = State[Row][Collum];
}
}
}
/*
*****************************************************************************************
* Description : Function that add's the round key for the current round
*
* Arguments : *Round_Key 16 byte long array holding the Round Key
*****************************************************************************************
*/
static void AES_Add_Round_Key(unsigned char *Round_Key)
{
unsigned char Row,Collum;
for(Collum = 0; Collum < 4; Collum++)
{
for(Row = 0; Row < 4; Row++)
{
State[Row][Collum] = State[Row][Collum] ^ Round_Key[Row + (4*Collum)];
}
}
}
/*
*****************************************************************************************
* Description : Function that substitutes a byte with a byte from the S_Table
*
* Arguments : Byte The byte that will be substituted
*
* Return : The return is the found byte in the S_Table
*****************************************************************************************
*/
static unsigned char AES_Sub_Byte(unsigned char Byte)
{
unsigned char S_Row,S_Collum;
unsigned char S_Byte;
//Split byte up in Row and Collum
S_Row = ((Byte >> 4) & 0x0F);
S_Collum = (Byte & 0x0F);
//Find the correct byte in the S_Table
S_Byte = TABLE_GET_U1_TWODIM(S_Table, S_Row, S_Collum);
return S_Byte;
}
/*
*****************************************************************************************
* Description : Function that preforms the shift row operation described in the AES standard
*****************************************************************************************
*/
static void AES_Shift_Rows()
{
unsigned char Buffer;
//Row 0 doesn't change
//Shift Row 1 one left
//Store firt byte in buffer
Buffer = State[1][0];
//Shift all bytes
State[1][0] = State[1][1];
State[1][1] = State[1][2];
State[1][2] = State[1][3];
State[1][3] = Buffer;
//Shift row 2 two left
Buffer = State[2][0];
State[2][0] = State[2][2];
State[2][2] = Buffer;
Buffer = State[2][1];
State[2][1] = State[2][3];
State[2][3] = Buffer;
//Shift row 3 three left
Buffer = State[3][3];
State[3][3] = State[3][2];
State[3][2] = State[3][1];
State[3][1] = State[3][0];
State[3][0] = Buffer;
}
/*
*****************************************************************************************
* Description : Function that preforms the Mix Collums operation described in the AES standard
*****************************************************************************************
*/
static void AES_Mix_Collums()
{
unsigned char Row,Collum;
unsigned char a[4], b[4];
for(Collum = 0; Collum < 4; Collum++)
{
for(Row = 0; Row < 4; Row++)
{
a[Row] = State[Row][Collum];
b[Row] = (State[Row][Collum] << 1);
if((State[Row][Collum] & 0x80) == 0x80)
{
b[Row] = b[Row] ^ 0x1B;
}
}
State[0][Collum] = b[0] ^ a[1] ^ b[1] ^ a[2] ^ a[3];
State[1][Collum] = a[0] ^ b[1] ^ a[2] ^ b[2] ^ a[3];
State[2][Collum] = a[0] ^ a[1] ^ b[2] ^ a[3] ^ b[3];
State[3][Collum] = a[0] ^ b[0] ^ a[1] ^ a[2] ^ b[3];
}
}
/*
*****************************************************************************************
* Description : Function that calculaties the round key for the current round
*
* Arguments : Round Number of current Round
* *Round_Key 16 byte long array holding the Round Key
*****************************************************************************************
*/
static void AES_Calculate_Round_Key(unsigned char Round, unsigned char *Round_Key)
{
unsigned char i,j;
unsigned char b;
unsigned char Temp[4];
unsigned char Buffer;
unsigned char Rcon;
//Calculate first Temp
//Copy laste byte from previous key
for(i = 0; i < 4; i++)
{
Temp[i] = Round_Key[i+12];
}
//Rotate Temp
Buffer = Temp[0];
Temp[0] = Temp[1];
Temp[1] = Temp[2];
Temp[2] = Temp[3];
Temp[3] = Buffer;
//Substitute Temp
for(i = 0; i < 4; i++)
{
Temp[i] = AES_Sub_Byte(Temp[i]);
}
//Calculate Rcon
Rcon = 0x01;
while(Round != 1)
{
b = Rcon & 0x80;
Rcon = Rcon << 1;
if(b == 0x80)
{
Rcon = Rcon ^ 0x1b;
}
Round--;
}
//XOR Rcon
Temp[0] = Temp[0] ^ Rcon;
//Calculate new key
for(i = 0; i < 4; i++)
{
for(j = 0; j < 4; j++)
{
Round_Key[j + (4*i)] = Round_Key[j + (4*i)] ^ Temp[j];
Temp[j] = Round_Key[j + (4*i)];
}
}
}
#endif // defined(USE_IDEETRON_AES)

@ -1,370 +0,0 @@
/*******************************************************************************
* Copyright (c) 2014-2015 IBM Corporation.
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Eclipse Public License v1.0
* which accompanies this distribution, and is available at
* http://www.eclipse.org/legal/epl-v10.html
*
* Contributors:
* IBM Zurich Research Lab - initial API, implementation and documentation
*******************************************************************************/
#include "../lmic/oslmic.h"
#if defined(USE_ORIGINAL_AES)
#define AES_MICSUB 0x30 // internal use only
static CONST_TABLE(u4_t, AES_RCON)[10] = {
0x01000000, 0x02000000, 0x04000000, 0x08000000, 0x10000000,
0x20000000, 0x40000000, 0x80000000, 0x1B000000, 0x36000000
};
static CONST_TABLE(u1_t, AES_S)[256] = {
0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76,
0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0, 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0,
0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15,
0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75,
0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84,
0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF,
0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8,
0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5, 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2,
0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73,
0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB,
0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79,
0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08,
0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A,
0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, 0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E,
0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF,
0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16,
};
static CONST_TABLE(u4_t, AES_E1)[256] = {
0xC66363A5, 0xF87C7C84, 0xEE777799, 0xF67B7B8D, 0xFFF2F20D, 0xD66B6BBD, 0xDE6F6FB1, 0x91C5C554,
0x60303050, 0x02010103, 0xCE6767A9, 0x562B2B7D, 0xE7FEFE19, 0xB5D7D762, 0x4DABABE6, 0xEC76769A,
0x8FCACA45, 0x1F82829D, 0x89C9C940, 0xFA7D7D87, 0xEFFAFA15, 0xB25959EB, 0x8E4747C9, 0xFBF0F00B,
0x41ADADEC, 0xB3D4D467, 0x5FA2A2FD, 0x45AFAFEA, 0x239C9CBF, 0x53A4A4F7, 0xE4727296, 0x9BC0C05B,
0x75B7B7C2, 0xE1FDFD1C, 0x3D9393AE, 0x4C26266A, 0x6C36365A, 0x7E3F3F41, 0xF5F7F702, 0x83CCCC4F,
0x6834345C, 0x51A5A5F4, 0xD1E5E534, 0xF9F1F108, 0xE2717193, 0xABD8D873, 0x62313153, 0x2A15153F,
0x0804040C, 0x95C7C752, 0x46232365, 0x9DC3C35E, 0x30181828, 0x379696A1, 0x0A05050F, 0x2F9A9AB5,
0x0E070709, 0x24121236, 0x1B80809B, 0xDFE2E23D, 0xCDEBEB26, 0x4E272769, 0x7FB2B2CD, 0xEA75759F,
0x1209091B, 0x1D83839E, 0x582C2C74, 0x341A1A2E, 0x361B1B2D, 0xDC6E6EB2, 0xB45A5AEE, 0x5BA0A0FB,
0xA45252F6, 0x763B3B4D, 0xB7D6D661, 0x7DB3B3CE, 0x5229297B, 0xDDE3E33E, 0x5E2F2F71, 0x13848497,
0xA65353F5, 0xB9D1D168, 0x00000000, 0xC1EDED2C, 0x40202060, 0xE3FCFC1F, 0x79B1B1C8, 0xB65B5BED,
0xD46A6ABE, 0x8DCBCB46, 0x67BEBED9, 0x7239394B, 0x944A4ADE, 0x984C4CD4, 0xB05858E8, 0x85CFCF4A,
0xBBD0D06B, 0xC5EFEF2A, 0x4FAAAAE5, 0xEDFBFB16, 0x864343C5, 0x9A4D4DD7, 0x66333355, 0x11858594,
0x8A4545CF, 0xE9F9F910, 0x04020206, 0xFE7F7F81, 0xA05050F0, 0x783C3C44, 0x259F9FBA, 0x4BA8A8E3,
0xA25151F3, 0x5DA3A3FE, 0x804040C0, 0x058F8F8A, 0x3F9292AD, 0x219D9DBC, 0x70383848, 0xF1F5F504,
0x63BCBCDF, 0x77B6B6C1, 0xAFDADA75, 0x42212163, 0x20101030, 0xE5FFFF1A, 0xFDF3F30E, 0xBFD2D26D,
0x81CDCD4C, 0x180C0C14, 0x26131335, 0xC3ECEC2F, 0xBE5F5FE1, 0x359797A2, 0x884444CC, 0x2E171739,
0x93C4C457, 0x55A7A7F2, 0xFC7E7E82, 0x7A3D3D47, 0xC86464AC, 0xBA5D5DE7, 0x3219192B, 0xE6737395,
0xC06060A0, 0x19818198, 0x9E4F4FD1, 0xA3DCDC7F, 0x44222266, 0x542A2A7E, 0x3B9090AB, 0x0B888883,
0x8C4646CA, 0xC7EEEE29, 0x6BB8B8D3, 0x2814143C, 0xA7DEDE79, 0xBC5E5EE2, 0x160B0B1D, 0xADDBDB76,
0xDBE0E03B, 0x64323256, 0x743A3A4E, 0x140A0A1E, 0x924949DB, 0x0C06060A, 0x4824246C, 0xB85C5CE4,
0x9FC2C25D, 0xBDD3D36E, 0x43ACACEF, 0xC46262A6, 0x399191A8, 0x319595A4, 0xD3E4E437, 0xF279798B,
0xD5E7E732, 0x8BC8C843, 0x6E373759, 0xDA6D6DB7, 0x018D8D8C, 0xB1D5D564, 0x9C4E4ED2, 0x49A9A9E0,
0xD86C6CB4, 0xAC5656FA, 0xF3F4F407, 0xCFEAEA25, 0xCA6565AF, 0xF47A7A8E, 0x47AEAEE9, 0x10080818,
0x6FBABAD5, 0xF0787888, 0x4A25256F, 0x5C2E2E72, 0x381C1C24, 0x57A6A6F1, 0x73B4B4C7, 0x97C6C651,
0xCBE8E823, 0xA1DDDD7C, 0xE874749C, 0x3E1F1F21, 0x964B4BDD, 0x61BDBDDC, 0x0D8B8B86, 0x0F8A8A85,
0xE0707090, 0x7C3E3E42, 0x71B5B5C4, 0xCC6666AA, 0x904848D8, 0x06030305, 0xF7F6F601, 0x1C0E0E12,
0xC26161A3, 0x6A35355F, 0xAE5757F9, 0x69B9B9D0, 0x17868691, 0x99C1C158, 0x3A1D1D27, 0x279E9EB9,
0xD9E1E138, 0xEBF8F813, 0x2B9898B3, 0x22111133, 0xD26969BB, 0xA9D9D970, 0x078E8E89, 0x339494A7,
0x2D9B9BB6, 0x3C1E1E22, 0x15878792, 0xC9E9E920, 0x87CECE49, 0xAA5555FF, 0x50282878, 0xA5DFDF7A,
0x038C8C8F, 0x59A1A1F8, 0x09898980, 0x1A0D0D17, 0x65BFBFDA, 0xD7E6E631, 0x844242C6, 0xD06868B8,
0x824141C3, 0x299999B0, 0x5A2D2D77, 0x1E0F0F11, 0x7BB0B0CB, 0xA85454FC, 0x6DBBBBD6, 0x2C16163A,
};
static CONST_TABLE(u4_t, AES_E2)[256] = {
0xA5C66363, 0x84F87C7C, 0x99EE7777, 0x8DF67B7B, 0x0DFFF2F2, 0xBDD66B6B, 0xB1DE6F6F, 0x5491C5C5,
0x50603030, 0x03020101, 0xA9CE6767, 0x7D562B2B, 0x19E7FEFE, 0x62B5D7D7, 0xE64DABAB, 0x9AEC7676,
0x458FCACA, 0x9D1F8282, 0x4089C9C9, 0x87FA7D7D, 0x15EFFAFA, 0xEBB25959, 0xC98E4747, 0x0BFBF0F0,
0xEC41ADAD, 0x67B3D4D4, 0xFD5FA2A2, 0xEA45AFAF, 0xBF239C9C, 0xF753A4A4, 0x96E47272, 0x5B9BC0C0,
0xC275B7B7, 0x1CE1FDFD, 0xAE3D9393, 0x6A4C2626, 0x5A6C3636, 0x417E3F3F, 0x02F5F7F7, 0x4F83CCCC,
0x5C683434, 0xF451A5A5, 0x34D1E5E5, 0x08F9F1F1, 0x93E27171, 0x73ABD8D8, 0x53623131, 0x3F2A1515,
0x0C080404, 0x5295C7C7, 0x65462323, 0x5E9DC3C3, 0x28301818, 0xA1379696, 0x0F0A0505, 0xB52F9A9A,
0x090E0707, 0x36241212, 0x9B1B8080, 0x3DDFE2E2, 0x26CDEBEB, 0x694E2727, 0xCD7FB2B2, 0x9FEA7575,
0x1B120909, 0x9E1D8383, 0x74582C2C, 0x2E341A1A, 0x2D361B1B, 0xB2DC6E6E, 0xEEB45A5A, 0xFB5BA0A0,
0xF6A45252, 0x4D763B3B, 0x61B7D6D6, 0xCE7DB3B3, 0x7B522929, 0x3EDDE3E3, 0x715E2F2F, 0x97138484,
0xF5A65353, 0x68B9D1D1, 0x00000000, 0x2CC1EDED, 0x60402020, 0x1FE3FCFC, 0xC879B1B1, 0xEDB65B5B,
0xBED46A6A, 0x468DCBCB, 0xD967BEBE, 0x4B723939, 0xDE944A4A, 0xD4984C4C, 0xE8B05858, 0x4A85CFCF,
0x6BBBD0D0, 0x2AC5EFEF, 0xE54FAAAA, 0x16EDFBFB, 0xC5864343, 0xD79A4D4D, 0x55663333, 0x94118585,
0xCF8A4545, 0x10E9F9F9, 0x06040202, 0x81FE7F7F, 0xF0A05050, 0x44783C3C, 0xBA259F9F, 0xE34BA8A8,
0xF3A25151, 0xFE5DA3A3, 0xC0804040, 0x8A058F8F, 0xAD3F9292, 0xBC219D9D, 0x48703838, 0x04F1F5F5,
0xDF63BCBC, 0xC177B6B6, 0x75AFDADA, 0x63422121, 0x30201010, 0x1AE5FFFF, 0x0EFDF3F3, 0x6DBFD2D2,
0x4C81CDCD, 0x14180C0C, 0x35261313, 0x2FC3ECEC, 0xE1BE5F5F, 0xA2359797, 0xCC884444, 0x392E1717,
0x5793C4C4, 0xF255A7A7, 0x82FC7E7E, 0x477A3D3D, 0xACC86464, 0xE7BA5D5D, 0x2B321919, 0x95E67373,
0xA0C06060, 0x98198181, 0xD19E4F4F, 0x7FA3DCDC, 0x66442222, 0x7E542A2A, 0xAB3B9090, 0x830B8888,
0xCA8C4646, 0x29C7EEEE, 0xD36BB8B8, 0x3C281414, 0x79A7DEDE, 0xE2BC5E5E, 0x1D160B0B, 0x76ADDBDB,
0x3BDBE0E0, 0x56643232, 0x4E743A3A, 0x1E140A0A, 0xDB924949, 0x0A0C0606, 0x6C482424, 0xE4B85C5C,
0x5D9FC2C2, 0x6EBDD3D3, 0xEF43ACAC, 0xA6C46262, 0xA8399191, 0xA4319595, 0x37D3E4E4, 0x8BF27979,
0x32D5E7E7, 0x438BC8C8, 0x596E3737, 0xB7DA6D6D, 0x8C018D8D, 0x64B1D5D5, 0xD29C4E4E, 0xE049A9A9,
0xB4D86C6C, 0xFAAC5656, 0x07F3F4F4, 0x25CFEAEA, 0xAFCA6565, 0x8EF47A7A, 0xE947AEAE, 0x18100808,
0xD56FBABA, 0x88F07878, 0x6F4A2525, 0x725C2E2E, 0x24381C1C, 0xF157A6A6, 0xC773B4B4, 0x5197C6C6,
0x23CBE8E8, 0x7CA1DDDD, 0x9CE87474, 0x213E1F1F, 0xDD964B4B, 0xDC61BDBD, 0x860D8B8B, 0x850F8A8A,
0x90E07070, 0x427C3E3E, 0xC471B5B5, 0xAACC6666, 0xD8904848, 0x05060303, 0x01F7F6F6, 0x121C0E0E,
0xA3C26161, 0x5F6A3535, 0xF9AE5757, 0xD069B9B9, 0x91178686, 0x5899C1C1, 0x273A1D1D, 0xB9279E9E,
0x38D9E1E1, 0x13EBF8F8, 0xB32B9898, 0x33221111, 0xBBD26969, 0x70A9D9D9, 0x89078E8E, 0xA7339494,
0xB62D9B9B, 0x223C1E1E, 0x92158787, 0x20C9E9E9, 0x4987CECE, 0xFFAA5555, 0x78502828, 0x7AA5DFDF,
0x8F038C8C, 0xF859A1A1, 0x80098989, 0x171A0D0D, 0xDA65BFBF, 0x31D7E6E6, 0xC6844242, 0xB8D06868,
0xC3824141, 0xB0299999, 0x775A2D2D, 0x111E0F0F, 0xCB7BB0B0, 0xFCA85454, 0xD66DBBBB, 0x3A2C1616,
};
static CONST_TABLE(u4_t, AES_E3)[256] = {
0x63A5C663, 0x7C84F87C, 0x7799EE77, 0x7B8DF67B, 0xF20DFFF2, 0x6BBDD66B, 0x6FB1DE6F, 0xC55491C5,
0x30506030, 0x01030201, 0x67A9CE67, 0x2B7D562B, 0xFE19E7FE, 0xD762B5D7, 0xABE64DAB, 0x769AEC76,
0xCA458FCA, 0x829D1F82, 0xC94089C9, 0x7D87FA7D, 0xFA15EFFA, 0x59EBB259, 0x47C98E47, 0xF00BFBF0,
0xADEC41AD, 0xD467B3D4, 0xA2FD5FA2, 0xAFEA45AF, 0x9CBF239C, 0xA4F753A4, 0x7296E472, 0xC05B9BC0,
0xB7C275B7, 0xFD1CE1FD, 0x93AE3D93, 0x266A4C26, 0x365A6C36, 0x3F417E3F, 0xF702F5F7, 0xCC4F83CC,
0x345C6834, 0xA5F451A5, 0xE534D1E5, 0xF108F9F1, 0x7193E271, 0xD873ABD8, 0x31536231, 0x153F2A15,
0x040C0804, 0xC75295C7, 0x23654623, 0xC35E9DC3, 0x18283018, 0x96A13796, 0x050F0A05, 0x9AB52F9A,
0x07090E07, 0x12362412, 0x809B1B80, 0xE23DDFE2, 0xEB26CDEB, 0x27694E27, 0xB2CD7FB2, 0x759FEA75,
0x091B1209, 0x839E1D83, 0x2C74582C, 0x1A2E341A, 0x1B2D361B, 0x6EB2DC6E, 0x5AEEB45A, 0xA0FB5BA0,
0x52F6A452, 0x3B4D763B, 0xD661B7D6, 0xB3CE7DB3, 0x297B5229, 0xE33EDDE3, 0x2F715E2F, 0x84971384,
0x53F5A653, 0xD168B9D1, 0x00000000, 0xED2CC1ED, 0x20604020, 0xFC1FE3FC, 0xB1C879B1, 0x5BEDB65B,
0x6ABED46A, 0xCB468DCB, 0xBED967BE, 0x394B7239, 0x4ADE944A, 0x4CD4984C, 0x58E8B058, 0xCF4A85CF,
0xD06BBBD0, 0xEF2AC5EF, 0xAAE54FAA, 0xFB16EDFB, 0x43C58643, 0x4DD79A4D, 0x33556633, 0x85941185,
0x45CF8A45, 0xF910E9F9, 0x02060402, 0x7F81FE7F, 0x50F0A050, 0x3C44783C, 0x9FBA259F, 0xA8E34BA8,
0x51F3A251, 0xA3FE5DA3, 0x40C08040, 0x8F8A058F, 0x92AD3F92, 0x9DBC219D, 0x38487038, 0xF504F1F5,
0xBCDF63BC, 0xB6C177B6, 0xDA75AFDA, 0x21634221, 0x10302010, 0xFF1AE5FF, 0xF30EFDF3, 0xD26DBFD2,
0xCD4C81CD, 0x0C14180C, 0x13352613, 0xEC2FC3EC, 0x5FE1BE5F, 0x97A23597, 0x44CC8844, 0x17392E17,
0xC45793C4, 0xA7F255A7, 0x7E82FC7E, 0x3D477A3D, 0x64ACC864, 0x5DE7BA5D, 0x192B3219, 0x7395E673,
0x60A0C060, 0x81981981, 0x4FD19E4F, 0xDC7FA3DC, 0x22664422, 0x2A7E542A, 0x90AB3B90, 0x88830B88,
0x46CA8C46, 0xEE29C7EE, 0xB8D36BB8, 0x143C2814, 0xDE79A7DE, 0x5EE2BC5E, 0x0B1D160B, 0xDB76ADDB,
0xE03BDBE0, 0x32566432, 0x3A4E743A, 0x0A1E140A, 0x49DB9249, 0x060A0C06, 0x246C4824, 0x5CE4B85C,
0xC25D9FC2, 0xD36EBDD3, 0xACEF43AC, 0x62A6C462, 0x91A83991, 0x95A43195, 0xE437D3E4, 0x798BF279,
0xE732D5E7, 0xC8438BC8, 0x37596E37, 0x6DB7DA6D, 0x8D8C018D, 0xD564B1D5, 0x4ED29C4E, 0xA9E049A9,
0x6CB4D86C, 0x56FAAC56, 0xF407F3F4, 0xEA25CFEA, 0x65AFCA65, 0x7A8EF47A, 0xAEE947AE, 0x08181008,
0xBAD56FBA, 0x7888F078, 0x256F4A25, 0x2E725C2E, 0x1C24381C, 0xA6F157A6, 0xB4C773B4, 0xC65197C6,
0xE823CBE8, 0xDD7CA1DD, 0x749CE874, 0x1F213E1F, 0x4BDD964B, 0xBDDC61BD, 0x8B860D8B, 0x8A850F8A,
0x7090E070, 0x3E427C3E, 0xB5C471B5, 0x66AACC66, 0x48D89048, 0x03050603, 0xF601F7F6, 0x0E121C0E,
0x61A3C261, 0x355F6A35, 0x57F9AE57, 0xB9D069B9, 0x86911786, 0xC15899C1, 0x1D273A1D, 0x9EB9279E,
0xE138D9E1, 0xF813EBF8, 0x98B32B98, 0x11332211, 0x69BBD269, 0xD970A9D9, 0x8E89078E, 0x94A73394,
0x9BB62D9B, 0x1E223C1E, 0x87921587, 0xE920C9E9, 0xCE4987CE, 0x55FFAA55, 0x28785028, 0xDF7AA5DF,
0x8C8F038C, 0xA1F859A1, 0x89800989, 0x0D171A0D, 0xBFDA65BF, 0xE631D7E6, 0x42C68442, 0x68B8D068,
0x41C38241, 0x99B02999, 0x2D775A2D, 0x0F111E0F, 0xB0CB7BB0, 0x54FCA854, 0xBBD66DBB, 0x163A2C16,
};
static CONST_TABLE(u4_t, AES_E4)[256] = {
0x6363A5C6, 0x7C7C84F8, 0x777799EE, 0x7B7B8DF6, 0xF2F20DFF, 0x6B6BBDD6, 0x6F6FB1DE, 0xC5C55491,
0x30305060, 0x01010302, 0x6767A9CE, 0x2B2B7D56, 0xFEFE19E7, 0xD7D762B5, 0xABABE64D, 0x76769AEC,
0xCACA458F, 0x82829D1F, 0xC9C94089, 0x7D7D87FA, 0xFAFA15EF, 0x5959EBB2, 0x4747C98E, 0xF0F00BFB,
0xADADEC41, 0xD4D467B3, 0xA2A2FD5F, 0xAFAFEA45, 0x9C9CBF23, 0xA4A4F753, 0x727296E4, 0xC0C05B9B,
0xB7B7C275, 0xFDFD1CE1, 0x9393AE3D, 0x26266A4C, 0x36365A6C, 0x3F3F417E, 0xF7F702F5, 0xCCCC4F83,
0x34345C68, 0xA5A5F451, 0xE5E534D1, 0xF1F108F9, 0x717193E2, 0xD8D873AB, 0x31315362, 0x15153F2A,
0x04040C08, 0xC7C75295, 0x23236546, 0xC3C35E9D, 0x18182830, 0x9696A137, 0x05050F0A, 0x9A9AB52F,
0x0707090E, 0x12123624, 0x80809B1B, 0xE2E23DDF, 0xEBEB26CD, 0x2727694E, 0xB2B2CD7F, 0x75759FEA,
0x09091B12, 0x83839E1D, 0x2C2C7458, 0x1A1A2E34, 0x1B1B2D36, 0x6E6EB2DC, 0x5A5AEEB4, 0xA0A0FB5B,
0x5252F6A4, 0x3B3B4D76, 0xD6D661B7, 0xB3B3CE7D, 0x29297B52, 0xE3E33EDD, 0x2F2F715E, 0x84849713,
0x5353F5A6, 0xD1D168B9, 0x00000000, 0xEDED2CC1, 0x20206040, 0xFCFC1FE3, 0xB1B1C879, 0x5B5BEDB6,
0x6A6ABED4, 0xCBCB468D, 0xBEBED967, 0x39394B72, 0x4A4ADE94, 0x4C4CD498, 0x5858E8B0, 0xCFCF4A85,
0xD0D06BBB, 0xEFEF2AC5, 0xAAAAE54F, 0xFBFB16ED, 0x4343C586, 0x4D4DD79A, 0x33335566, 0x85859411,
0x4545CF8A, 0xF9F910E9, 0x02020604, 0x7F7F81FE, 0x5050F0A0, 0x3C3C4478, 0x9F9FBA25, 0xA8A8E34B,
0x5151F3A2, 0xA3A3FE5D, 0x4040C080, 0x8F8F8A05, 0x9292AD3F, 0x9D9DBC21, 0x38384870, 0xF5F504F1,
0xBCBCDF63, 0xB6B6C177, 0xDADA75AF, 0x21216342, 0x10103020, 0xFFFF1AE5, 0xF3F30EFD, 0xD2D26DBF,
0xCDCD4C81, 0x0C0C1418, 0x13133526, 0xECEC2FC3, 0x5F5FE1BE, 0x9797A235, 0x4444CC88, 0x1717392E,
0xC4C45793, 0xA7A7F255, 0x7E7E82FC, 0x3D3D477A, 0x6464ACC8, 0x5D5DE7BA, 0x19192B32, 0x737395E6,
0x6060A0C0, 0x81819819, 0x4F4FD19E, 0xDCDC7FA3, 0x22226644, 0x2A2A7E54, 0x9090AB3B, 0x8888830B,
0x4646CA8C, 0xEEEE29C7, 0xB8B8D36B, 0x14143C28, 0xDEDE79A7, 0x5E5EE2BC, 0x0B0B1D16, 0xDBDB76AD,
0xE0E03BDB, 0x32325664, 0x3A3A4E74, 0x0A0A1E14, 0x4949DB92, 0x06060A0C, 0x24246C48, 0x5C5CE4B8,
0xC2C25D9F, 0xD3D36EBD, 0xACACEF43, 0x6262A6C4, 0x9191A839, 0x9595A431, 0xE4E437D3, 0x79798BF2,
0xE7E732D5, 0xC8C8438B, 0x3737596E, 0x6D6DB7DA, 0x8D8D8C01, 0xD5D564B1, 0x4E4ED29C, 0xA9A9E049,
0x6C6CB4D8, 0x5656FAAC, 0xF4F407F3, 0xEAEA25CF, 0x6565AFCA, 0x7A7A8EF4, 0xAEAEE947, 0x08081810,
0xBABAD56F, 0x787888F0, 0x25256F4A, 0x2E2E725C, 0x1C1C2438, 0xA6A6F157, 0xB4B4C773, 0xC6C65197,
0xE8E823CB, 0xDDDD7CA1, 0x74749CE8, 0x1F1F213E, 0x4B4BDD96, 0xBDBDDC61, 0x8B8B860D, 0x8A8A850F,
0x707090E0, 0x3E3E427C, 0xB5B5C471, 0x6666AACC, 0x4848D890, 0x03030506, 0xF6F601F7, 0x0E0E121C,
0x6161A3C2, 0x35355F6A, 0x5757F9AE, 0xB9B9D069, 0x86869117, 0xC1C15899, 0x1D1D273A, 0x9E9EB927,
0xE1E138D9, 0xF8F813EB, 0x9898B32B, 0x11113322, 0x6969BBD2, 0xD9D970A9, 0x8E8E8907, 0x9494A733,
0x9B9BB62D, 0x1E1E223C, 0x87879215, 0xE9E920C9, 0xCECE4987, 0x5555FFAA, 0x28287850, 0xDFDF7AA5,
0x8C8C8F03, 0xA1A1F859, 0x89898009, 0x0D0D171A, 0xBFBFDA65, 0xE6E631D7, 0x4242C684, 0x6868B8D0,
0x4141C382, 0x9999B029, 0x2D2D775A, 0x0F0F111E, 0xB0B0CB7B, 0x5454FCA8, 0xBBBBD66D, 0x16163A2C,
};
#define msbf4_read(p) ((p)[0]<<24 | (p)[1]<<16 | (p)[2]<<8 | (p)[3])
#define msbf4_write(p,v) (p)[0]=(v)>>24,(p)[1]=(v)>>16,(p)[2]=(v)>>8,(p)[3]=(v)
#define swapmsbf(x) ( (x&0xFF)<<24 | (x&0xFF00)<<8 | (x&0xFF0000)>>8 | (x>>24) )
#define u1(v) ((u1_t)(v))
#define AES_key4(r1,r2,r3,r0,i) r1 = ki[i+1]; \
r2 = ki[i+2]; \
r3 = ki[i+3]; \
r0 = ki[i]
#define AES_expr4(r1,r2,r3,r0,i) r1 ^= TABLE_GET_U4(AES_E4, u1(i)); \
r2 ^= TABLE_GET_U4(AES_E3, u1(i>>8)); \
r3 ^= TABLE_GET_U4(AES_E2, u1(i>>16)); \
r0 ^= TABLE_GET_U4(AES_E1, (i>>24))
#define AES_expr(a,r0,r1,r2,r3,i) a = ki[i]; \
a ^= ((u4_t)TABLE_GET_U1(AES_S, r0>>24 )<<24); \
a ^= ((u4_t)TABLE_GET_U1(AES_S, u1(r1>>16))<<16); \
a ^= ((u4_t)TABLE_GET_U1(AES_S, u1(r2>> 8))<< 8); \
a ^= (u4_t)TABLE_GET_U1(AES_S, u1(r3) )
// global area for passing parameters (aux, key) and for storing round keys
u4_t AESAUX[16/sizeof(u4_t)];
u4_t AESKEY[11*16/sizeof(u4_t)];
// generate 1+10 roundkeys for encryption with 128-bit key
// read 128-bit key from AESKEY in MSBF, generate roundkey words in place
static void aesroundkeys () {
int i;
u4_t b;
for( i=0; i<4; i++) {
AESKEY[i] = swapmsbf(AESKEY[i]);
}
b = AESKEY[3];
for( ; i<44; i++ ) {
if( i%4==0 ) {
// b = SubWord(RotWord(b)) xor Rcon[i/4]
b = ((u4_t)TABLE_GET_U1(AES_S, u1(b >> 16)) << 24) ^
((u4_t)TABLE_GET_U1(AES_S, u1(b >> 8)) << 16) ^
((u4_t)TABLE_GET_U1(AES_S, u1(b) ) << 8) ^
((u4_t)TABLE_GET_U1(AES_S, b >> 24 ) ) ^
TABLE_GET_U4(AES_RCON, (i-4)/4);
}
AESKEY[i] = b ^= AESKEY[i-4];
}
}
u4_t os_aes (u1_t mode, xref2u1_t buf, u2_t len) {
aesroundkeys();
if( mode & AES_MICNOAUX ) {
AESAUX[0] = AESAUX[1] = AESAUX[2] = AESAUX[3] = 0;
} else {
AESAUX[0] = swapmsbf(AESAUX[0]);
AESAUX[1] = swapmsbf(AESAUX[1]);
AESAUX[2] = swapmsbf(AESAUX[2]);
AESAUX[3] = swapmsbf(AESAUX[3]);
}
while( (signed char)len > 0 ) {
u4_t a0, a1, a2, a3;
u4_t t0, t1, t2, t3;
u4_t *ki, *ke;
// load input block
if( (mode & AES_CTR) || ((mode & AES_MIC) && (mode & AES_MICNOAUX)==0) ) { // load CTR block or first MIC block
a0 = AESAUX[0];
a1 = AESAUX[1];
a2 = AESAUX[2];
a3 = AESAUX[3];
}
else if( (mode & AES_MIC) && len <= 16 ) { // last MIC block
a0 = a1 = a2 = a3 = 0; // load null block
mode |= ((len == 16) ? 1 : 2) << 4; // set MICSUB: CMAC subkey K1 or K2
} else
LOADDATA: { // load data block (partially)
for(t0=0; t0<16; t0++) {
t1 = (t1<<8) | ((t0<len) ? buf[t0] : (t0==len) ? 0x80 : 0x00);
if((t0&3)==3) {
a0 = a1;
a1 = a2;
a2 = a3;
a3 = t1;
}
}
if( mode & AES_MIC ) {
a0 ^= AESAUX[0];
a1 ^= AESAUX[1];
a2 ^= AESAUX[2];
a3 ^= AESAUX[3];
}
}
// perform AES encryption on block in a0-a3
ki = AESKEY;
ke = ki + 8*4;
a0 ^= ki[0];
a1 ^= ki[1];
a2 ^= ki[2];
a3 ^= ki[3];
do {
AES_key4 (t1,t2,t3,t0,4);
AES_expr4(t1,t2,t3,t0,a0);
AES_expr4(t2,t3,t0,t1,a1);
AES_expr4(t3,t0,t1,t2,a2);
AES_expr4(t0,t1,t2,t3,a3);
AES_key4 (a1,a2,a3,a0,8);
AES_expr4(a1,a2,a3,a0,t0);
AES_expr4(a2,a3,a0,a1,t1);
AES_expr4(a3,a0,a1,a2,t2);
AES_expr4(a0,a1,a2,a3,t3);
} while( (ki+=8) < ke );
AES_key4 (t1,t2,t3,t0,4);
AES_expr4(t1,t2,t3,t0,a0);
AES_expr4(t2,t3,t0,t1,a1);
AES_expr4(t3,t0,t1,t2,a2);
AES_expr4(t0,t1,t2,t3,a3);
AES_expr(a0,t0,t1,t2,t3,8);
AES_expr(a1,t1,t2,t3,t0,9);
AES_expr(a2,t2,t3,t0,t1,10);
AES_expr(a3,t3,t0,t1,t2,11);
// result of AES encryption in a0-a3
if( mode & AES_MIC ) {
if( (t1 = (mode & AES_MICSUB) >> 4) != 0 ) { // last block
do {
// compute CMAC subkey K1 and K2
t0 = a0 >> 31; // save MSB
a0 = (a0 << 1) | (a1 >> 31);
a1 = (a1 << 1) | (a2 >> 31);
a2 = (a2 << 1) | (a3 >> 31);
a3 = (a3 << 1);
if( t0 ) a3 ^= 0x87;
} while( --t1 );
AESAUX[0] ^= a0;
AESAUX[1] ^= a1;
AESAUX[2] ^= a2;
AESAUX[3] ^= a3;
mode &= ~AES_MICSUB;
goto LOADDATA;
} else {
// save cipher block as new iv
AESAUX[0] = a0;
AESAUX[1] = a1;
AESAUX[2] = a2;
AESAUX[3] = a3;
}
} else { // CIPHER
if( mode & AES_CTR ) { // xor block (partially)
t0 = (len > 16) ? 16: len;
for(t1=0; t1<t0; t1++) {
buf[t1] ^= (a0>>24);
a0 <<= 8;
if((t1&3)==3) {
a0 = a1;
a1 = a2;
a2 = a3;
}
}
// update counter
AESAUX[3]++;
} else { // ECB
// store block
msbf4_write(buf+0, a0);
msbf4_write(buf+4, a1);
msbf4_write(buf+8, a2);
msbf4_write(buf+12, a3);
}
}
// update block state
if( (mode & AES_MIC)==0 || (mode & AES_MICNOAUX) ) {
buf += 16;
len -= 16;
}
mode |= AES_MICNOAUX;
}
return AESAUX[0];
}
#endif

@ -1,127 +0,0 @@
/*******************************************************************************
* Copyright (c) 2016 Matthijs Kooijman
*
* LICENSE
*
* Permission is hereby granted, free of charge, to anyone
* obtaining a copy of this document and accompanying files,
* to do whatever they want with them without any restriction,
* including, but not limited to, copying, modification and
* redistribution.
*
* NO WARRANTY OF ANY KIND IS PROVIDED.
*******************************************************************************/
/*
* The original LMIC AES implementation integrates raw AES encryption
* with CMAC and AES-CTR in a single piece of code. Most other AES
* implementations (only) offer raw single block AES encryption, so this
* file contains an implementation of CMAC and AES-CTR, and offers the
* same API through the os_aes() function as the original AES
* implementation. This file assumes that there is an encryption
* function available with this signature:
*
* extern "C" void lmic_aes_encrypt(u1_t *data, u1_t *key);
*
* That takes a single 16-byte buffer and encrypts it wit the given
* 16-byte key.
*/
#include "../lmic/oslmic.h"
#if !defined(USE_ORIGINAL_AES)
// This should be defined elsewhere
void lmic_aes_encrypt(u1_t *data, u1_t *key);
// global area for passing parameters (aux, key)
u4_t AESAUX[16/sizeof(u4_t)];
u4_t AESKEY[16/sizeof(u4_t)];
// Shift the given buffer left one bit
static void shift_left(xref2u1_t buf, u1_t len) {
while (len--) {
u1_t next = len ? buf[1] : 0;
u1_t val = (*buf << 1);
if (next & 0x80)
val |= 1;
*buf++ = val;
}
}
// Apply RFC4493 CMAC, using AESKEY as the key. If prepend_aux is true,
// AESAUX is prepended to the message. AESAUX is used as working memory
// in any case. The CMAC result is returned in AESAUX as well.
static void os_aes_cmac(xref2u1_t buf, u2_t len, u1_t prepend_aux) {
if (prepend_aux)
lmic_aes_encrypt(AESaux, AESkey);
else
memset (AESaux, 0, 16);
while (len > 0) {
u1_t need_padding = 0;
for (u1_t i = 0; i < 16; ++i, ++buf, --len) {
if (len == 0) {
// The message is padded with 0x80 and then zeroes.
// Since zeroes are no-op for xor, we can just skip them
// and leave AESAUX unchanged for them.
AESaux[i] ^= 0x80;
need_padding = 1;
break;
}
AESaux[i] ^= *buf;
}
if (len == 0) {
// Final block, xor with K1 or K2. K1 and K2 are calculated
// by encrypting the all-zeroes block and then applying some
// shifts and xor on that.
u1_t final_key[16];
memset(final_key, 0, sizeof(final_key));
lmic_aes_encrypt(final_key, AESkey);
// Calculate K1
u1_t msb = final_key[0] & 0x80;
shift_left(final_key, sizeof(final_key));
if (msb)
final_key[sizeof(final_key)-1] ^= 0x87;
// If the final block was not complete, calculate K2 from K1
if (need_padding) {
msb = final_key[0] & 0x80;
shift_left(final_key, sizeof(final_key));
if (msb)
final_key[sizeof(final_key)-1] ^= 0x87;
}
// Xor with K1 or K2
for (u1_t i = 0; i < sizeof(final_key); ++i)
AESaux[i] ^= final_key[i];
}
lmic_aes_encrypt(AESaux, AESkey);
}
}
// Run AES-CTR using the key in AESKEY and using AESAUX as the
// counter block. The last byte of the counter block will be incremented
// for every block. The given buffer will be encrypted in place.
static void os_aes_ctr (xref2u1_t buf, u2_t len) {
u1_t ctr[16];
while (len) {
// Encrypt the counter block with the selected key
memcpy(ctr, AESaux, sizeof(ctr));
lmic_aes_encrypt(ctr, AESkey);
// Xor the payload with the resulting ciphertext
for (u1_t i = 0; i < 16 && len > 0; i++, len--, buf++)
*buf ^= ctr[i];
// Increment the block index byte
AESaux[15]++;
}
}
#endif // !defined(USE_ORIGINAL_AES)

@ -1,253 +0,0 @@
/*******************************************************************************
* Copyright (c) 2015 Matthijs Kooijman
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Eclipse Public License v1.0
* which accompanies this distribution, and is available at
* http://www.eclipse.org/legal/epl-v10.html
*
* This the HAL to run LMIC on top of the Arduino environment.
*******************************************************************************/
#include <Arduino.h>
#include <SPI.h>
#include "../lmic.h"
#include "hal.h"
#include <stdio.h>
// -----------------------------------------------------------------------------
// I/O
static void hal_io_init () {
// NSS and DIO0 are required, DIO1 is required for LoRa, DIO2 for FSK
ASSERT(lmic_pins.nss != LMIC_UNUSED_PIN);
ASSERT(lmic_pins.dio[0] != LMIC_UNUSED_PIN);
ASSERT(lmic_pins.dio[1] != LMIC_UNUSED_PIN || lmic_pins.dio[2] != LMIC_UNUSED_PIN);
pinMode(lmic_pins.nss, OUTPUT);
if (lmic_pins.rxtx != LMIC_UNUSED_PIN)
pinMode(lmic_pins.rxtx, OUTPUT);
if (lmic_pins.rst != LMIC_UNUSED_PIN)
pinMode(lmic_pins.rst, OUTPUT);
pinMode(lmic_pins.dio[0], INPUT);
if (lmic_pins.dio[1] != LMIC_UNUSED_PIN)
pinMode(lmic_pins.dio[1], INPUT);
if (lmic_pins.dio[2] != LMIC_UNUSED_PIN)
pinMode(lmic_pins.dio[2], INPUT);
}
// val == 1 => tx 1
void hal_pin_rxtx (u1_t val) {
if (lmic_pins.rxtx != LMIC_UNUSED_PIN)
digitalWrite(lmic_pins.rxtx, val);
}
// set radio RST pin to given value (or keep floating!)
void hal_pin_rst (u1_t val) {
if (lmic_pins.rst == LMIC_UNUSED_PIN)
return;
if(val == 0 || val == 1) { // drive pin
pinMode(lmic_pins.rst, OUTPUT);
digitalWrite(lmic_pins.rst, val);
} else { // keep pin floating
pinMode(lmic_pins.rst, INPUT);
}
}
static bool dio_states[NUM_DIO] = {0};
static void hal_io_check() {
uint8_t i;
for (i = 0; i < NUM_DIO; ++i) {
if (lmic_pins.dio[i] == LMIC_UNUSED_PIN)
continue;
if (dio_states[i] != digitalRead(lmic_pins.dio[i])) {
dio_states[i] = !dio_states[i];
if (dio_states[i])
radio_irq_handler(i);
}
}
}
// -----------------------------------------------------------------------------
// SPI
static const SPISettings settings(10E6, MSBFIRST, SPI_MODE0);
static void hal_spi_init () {
SPI.begin();
}
void hal_pin_nss (u1_t val) {
if (!val)
SPI.beginTransaction(settings);
else
SPI.endTransaction();
//Serial.println(val?">>":"<<");
digitalWrite(lmic_pins.nss, val);
}
// perform SPI transaction with radio
u1_t hal_spi (u1_t out) {
u1_t res = SPI.transfer(out);
/*
Serial.print(">");
Serial.print(out, HEX);
Serial.print("<");
Serial.println(res, HEX);
*/
return res;
}
// -----------------------------------------------------------------------------
// TIME
static void hal_time_init () {
// Nothing to do
}
u4_t hal_ticks () {
// Because micros() is scaled down in this function, micros() will
// overflow before the tick timer should, causing the tick timer to
// miss a significant part of its values if not corrected. To fix
// this, the "overflow" serves as an overflow area for the micros()
// counter. It consists of three parts:
// - The US_PER_OSTICK upper bits are effectively an extension for
// the micros() counter and are added to the result of this
// function.
// - The next bit overlaps with the most significant bit of
// micros(). This is used to detect micros() overflows.
// - The remaining bits are always zero.
//
// By comparing the overlapping bit with the corresponding bit in
// the micros() return value, overflows can be detected and the
// upper bits are incremented. This is done using some clever
// bitwise operations, to remove the need for comparisons and a
// jumps, which should result in efficient code. By avoiding shifts
// other than by multiples of 8 as much as possible, this is also
// efficient on AVR (which only has 1-bit shifts).
static uint8_t overflow = 0;
// Scaled down timestamp. The top US_PER_OSTICK_EXPONENT bits are 0,
// the others will be the lower bits of our return value.
uint32_t scaled = micros() >> US_PER_OSTICK_EXPONENT;
// Most significant byte of scaled
uint8_t msb = scaled >> 24;
// Mask pointing to the overlapping bit in msb and overflow.
const uint8_t mask = (1 << (7 - US_PER_OSTICK_EXPONENT));
// Update overflow. If the overlapping bit is different
// between overflow and msb, it is added to the stored value,
// so the overlapping bit becomes equal again and, if it changed
// from 1 to 0, the upper bits are incremented.
overflow += (msb ^ overflow) & mask;
// Return the scaled value with the upper bits of stored added. The
// overlapping bit will be equal and the lower bits will be 0, so
// bitwise or is a no-op for them.
return scaled | ((uint32_t)overflow << 24);
// 0 leads to correct, but overly complex code (it could just return
// micros() unmodified), 8 leaves no room for the overlapping bit.
static_assert(US_PER_OSTICK_EXPONENT > 0 && US_PER_OSTICK_EXPONENT < 8, "Invalid US_PER_OSTICK_EXPONENT value");
}
// Returns the number of ticks until time. Negative values indicate that
// time has already passed.
static s4_t delta_time(u4_t time) {
return (s4_t)(time - hal_ticks());
}
void hal_waitUntil (u4_t time) {
s4_t delta = delta_time(time);
// From delayMicroseconds docs: Currently, the largest value that
// will produce an accurate delay is 16383.
while (delta > (16000 / US_PER_OSTICK)) {
delay(16);
delta -= (16000 / US_PER_OSTICK);
}
if (delta > 0)
delayMicroseconds(delta * US_PER_OSTICK);
}
// check and rewind for target time
u1_t hal_checkTimer (u4_t time) {
// No need to schedule wakeup, since we're not sleeping
return delta_time(time) <= 0;
}
static uint8_t irqlevel = 0;
void hal_disableIRQs () {
noInterrupts();
irqlevel++;
}
void hal_enableIRQs () {
if(--irqlevel == 0) {
interrupts();
// Instead of using proper interrupts (which are a bit tricky
// and/or not available on all pins on AVR), just poll the pin
// values. Since os_runloop disables and re-enables interrupts,
// putting this here makes sure we check at least once every
// loop.
//
// As an additional bonus, this prevents the can of worms that
// we would otherwise get for running SPI transfers inside ISRs
hal_io_check();
}
}
void hal_sleep () {
// Not implemented
}
// -----------------------------------------------------------------------------
#if defined(LMIC_PRINTF_TO)
static int uart_putchar (char c, FILE *)
{
LMIC_PRINTF_TO.write(c) ;
return 0 ;
}
void hal_printf_init() {
// create a FILE structure to reference our UART output function
static FILE uartout;
memset(&uartout, 0, sizeof(uartout));
// fill in the UART file descriptor with pointer to writer.
fdev_setup_stream (&uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE);
// The uart is the standard output device STDOUT.
stdout = &uartout ;
}
#endif // defined(LMIC_PRINTF_TO)
void hal_init () {
// configure radio I/O and interrupt handler
hal_io_init();
// configure radio SPI
hal_spi_init();
// configure timer and interrupt handler
hal_time_init();
#if defined(LMIC_PRINTF_TO)
// printf support
hal_printf_init();
#endif
}
void hal_failed (const char *file, u2_t line) {
#if defined(LMIC_FAILURE_TO)
LMIC_FAILURE_TO.println("FAILURE ");
LMIC_FAILURE_TO.print(file);
LMIC_FAILURE_TO.print(':');
LMIC_FAILURE_TO.println(line);
LMIC_FAILURE_TO.flush();
#endif
hal_disableIRQs();
while(1);
}

@ -1,28 +0,0 @@
/*******************************************************************************
* Copyright (c) 2015 Matthijs Kooijman
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Eclipse Public License v1.0
* which accompanies this distribution, and is available at
* http://www.eclipse.org/legal/epl-v10.html
*
* This the HAL to run LMIC on top of the Arduino environment.
*******************************************************************************/
#ifndef _hal_hal_h_
#define _hal_hal_h_
static const int NUM_DIO = 3;
struct lmic_pinmap {
u1_t nss;
u1_t rxtx;
u1_t rst;
u1_t dio[NUM_DIO];
};
// Use this for any unused pins.
const u1_t LMIC_UNUSED_PIN = 0xff;
// Declared here, to be defined an initialized by the application
extern const lmic_pinmap lmic_pins;
#endif // _hal_hal_h_

@ -1,9 +0,0 @@
#ifdef __cplusplus
extern "C"{
#endif
#include "lmic/lmic.h"
#ifdef __cplusplus
}
#endif

@ -1,367 +0,0 @@
/*******************************************************************************
* Copyright (c) 2014-2015 IBM Corporation.
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Eclipse Public License v1.0
* which accompanies this distribution, and is available at
* http://www.eclipse.org/legal/epl-v10.html
*
* Contributors:
* IBM Zurich Research Lab - initial API, implementation and documentation
*******************************************************************************/
#include "oslmic.h"
#define AES_MICSUB 0x30 // internal use only
static CONST_TABLE(u4_t, AES_RCON)[10] = {
0x01000000, 0x02000000, 0x04000000, 0x08000000, 0x10000000,
0x20000000, 0x40000000, 0x80000000, 0x1B000000, 0x36000000
};
static CONST_TABLE(u1_t, AES_S)[256] = {
0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76,
0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0, 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0,
0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15,
0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75,
0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84,
0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF,
0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8,
0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5, 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2,
0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73,
0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB,
0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79,
0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08,
0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A,
0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, 0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E,
0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF,
0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16,
};
static CONST_TABLE(u4_t, AES_E1)[256] = {
0xC66363A5, 0xF87C7C84, 0xEE777799, 0xF67B7B8D, 0xFFF2F20D, 0xD66B6BBD, 0xDE6F6FB1, 0x91C5C554,
0x60303050, 0x02010103, 0xCE6767A9, 0x562B2B7D, 0xE7FEFE19, 0xB5D7D762, 0x4DABABE6, 0xEC76769A,
0x8FCACA45, 0x1F82829D, 0x89C9C940, 0xFA7D7D87, 0xEFFAFA15, 0xB25959EB, 0x8E4747C9, 0xFBF0F00B,
0x41ADADEC, 0xB3D4D467, 0x5FA2A2FD, 0x45AFAFEA, 0x239C9CBF, 0x53A4A4F7, 0xE4727296, 0x9BC0C05B,
0x75B7B7C2, 0xE1FDFD1C, 0x3D9393AE, 0x4C26266A, 0x6C36365A, 0x7E3F3F41, 0xF5F7F702, 0x83CCCC4F,
0x6834345C, 0x51A5A5F4, 0xD1E5E534, 0xF9F1F108, 0xE2717193, 0xABD8D873, 0x62313153, 0x2A15153F,
0x0804040C, 0x95C7C752, 0x46232365, 0x9DC3C35E, 0x30181828, 0x379696A1, 0x0A05050F, 0x2F9A9AB5,
0x0E070709, 0x24121236, 0x1B80809B, 0xDFE2E23D, 0xCDEBEB26, 0x4E272769, 0x7FB2B2CD, 0xEA75759F,
0x1209091B, 0x1D83839E, 0x582C2C74, 0x341A1A2E, 0x361B1B2D, 0xDC6E6EB2, 0xB45A5AEE, 0x5BA0A0FB,
0xA45252F6, 0x763B3B4D, 0xB7D6D661, 0x7DB3B3CE, 0x5229297B, 0xDDE3E33E, 0x5E2F2F71, 0x13848497,
0xA65353F5, 0xB9D1D168, 0x00000000, 0xC1EDED2C, 0x40202060, 0xE3FCFC1F, 0x79B1B1C8, 0xB65B5BED,
0xD46A6ABE, 0x8DCBCB46, 0x67BEBED9, 0x7239394B, 0x944A4ADE, 0x984C4CD4, 0xB05858E8, 0x85CFCF4A,
0xBBD0D06B, 0xC5EFEF2A, 0x4FAAAAE5, 0xEDFBFB16, 0x864343C5, 0x9A4D4DD7, 0x66333355, 0x11858594,
0x8A4545CF, 0xE9F9F910, 0x04020206, 0xFE7F7F81, 0xA05050F0, 0x783C3C44, 0x259F9FBA, 0x4BA8A8E3,
0xA25151F3, 0x5DA3A3FE, 0x804040C0, 0x058F8F8A, 0x3F9292AD, 0x219D9DBC, 0x70383848, 0xF1F5F504,
0x63BCBCDF, 0x77B6B6C1, 0xAFDADA75, 0x42212163, 0x20101030, 0xE5FFFF1A, 0xFDF3F30E, 0xBFD2D26D,
0x81CDCD4C, 0x180C0C14, 0x26131335, 0xC3ECEC2F, 0xBE5F5FE1, 0x359797A2, 0x884444CC, 0x2E171739,
0x93C4C457, 0x55A7A7F2, 0xFC7E7E82, 0x7A3D3D47, 0xC86464AC, 0xBA5D5DE7, 0x3219192B, 0xE6737395,
0xC06060A0, 0x19818198, 0x9E4F4FD1, 0xA3DCDC7F, 0x44222266, 0x542A2A7E, 0x3B9090AB, 0x0B888883,
0x8C4646CA, 0xC7EEEE29, 0x6BB8B8D3, 0x2814143C, 0xA7DEDE79, 0xBC5E5EE2, 0x160B0B1D, 0xADDBDB76,
0xDBE0E03B, 0x64323256, 0x743A3A4E, 0x140A0A1E, 0x924949DB, 0x0C06060A, 0x4824246C, 0xB85C5CE4,
0x9FC2C25D, 0xBDD3D36E, 0x43ACACEF, 0xC46262A6, 0x399191A8, 0x319595A4, 0xD3E4E437, 0xF279798B,
0xD5E7E732, 0x8BC8C843, 0x6E373759, 0xDA6D6DB7, 0x018D8D8C, 0xB1D5D564, 0x9C4E4ED2, 0x49A9A9E0,
0xD86C6CB4, 0xAC5656FA, 0xF3F4F407, 0xCFEAEA25, 0xCA6565AF, 0xF47A7A8E, 0x47AEAEE9, 0x10080818,
0x6FBABAD5, 0xF0787888, 0x4A25256F, 0x5C2E2E72, 0x381C1C24, 0x57A6A6F1, 0x73B4B4C7, 0x97C6C651,
0xCBE8E823, 0xA1DDDD7C, 0xE874749C, 0x3E1F1F21, 0x964B4BDD, 0x61BDBDDC, 0x0D8B8B86, 0x0F8A8A85,
0xE0707090, 0x7C3E3E42, 0x71B5B5C4, 0xCC6666AA, 0x904848D8, 0x06030305, 0xF7F6F601, 0x1C0E0E12,
0xC26161A3, 0x6A35355F, 0xAE5757F9, 0x69B9B9D0, 0x17868691, 0x99C1C158, 0x3A1D1D27, 0x279E9EB9,
0xD9E1E138, 0xEBF8F813, 0x2B9898B3, 0x22111133, 0xD26969BB, 0xA9D9D970, 0x078E8E89, 0x339494A7,
0x2D9B9BB6, 0x3C1E1E22, 0x15878792, 0xC9E9E920, 0x87CECE49, 0xAA5555FF, 0x50282878, 0xA5DFDF7A,
0x038C8C8F, 0x59A1A1F8, 0x09898980, 0x1A0D0D17, 0x65BFBFDA, 0xD7E6E631, 0x844242C6, 0xD06868B8,
0x824141C3, 0x299999B0, 0x5A2D2D77, 0x1E0F0F11, 0x7BB0B0CB, 0xA85454FC, 0x6DBBBBD6, 0x2C16163A,
};
static CONST_TABLE(u4_t, AES_E2)[256] = {
0xA5C66363, 0x84F87C7C, 0x99EE7777, 0x8DF67B7B, 0x0DFFF2F2, 0xBDD66B6B, 0xB1DE6F6F, 0x5491C5C5,
0x50603030, 0x03020101, 0xA9CE6767, 0x7D562B2B, 0x19E7FEFE, 0x62B5D7D7, 0xE64DABAB, 0x9AEC7676,
0x458FCACA, 0x9D1F8282, 0x4089C9C9, 0x87FA7D7D, 0x15EFFAFA, 0xEBB25959, 0xC98E4747, 0x0BFBF0F0,
0xEC41ADAD, 0x67B3D4D4, 0xFD5FA2A2, 0xEA45AFAF, 0xBF239C9C, 0xF753A4A4, 0x96E47272, 0x5B9BC0C0,
0xC275B7B7, 0x1CE1FDFD, 0xAE3D9393, 0x6A4C2626, 0x5A6C3636, 0x417E3F3F, 0x02F5F7F7, 0x4F83CCCC,
0x5C683434, 0xF451A5A5, 0x34D1E5E5, 0x08F9F1F1, 0x93E27171, 0x73ABD8D8, 0x53623131, 0x3F2A1515,
0x0C080404, 0x5295C7C7, 0x65462323, 0x5E9DC3C3, 0x28301818, 0xA1379696, 0x0F0A0505, 0xB52F9A9A,
0x090E0707, 0x36241212, 0x9B1B8080, 0x3DDFE2E2, 0x26CDEBEB, 0x694E2727, 0xCD7FB2B2, 0x9FEA7575,
0x1B120909, 0x9E1D8383, 0x74582C2C, 0x2E341A1A, 0x2D361B1B, 0xB2DC6E6E, 0xEEB45A5A, 0xFB5BA0A0,
0xF6A45252, 0x4D763B3B, 0x61B7D6D6, 0xCE7DB3B3, 0x7B522929, 0x3EDDE3E3, 0x715E2F2F, 0x97138484,
0xF5A65353, 0x68B9D1D1, 0x00000000, 0x2CC1EDED, 0x60402020, 0x1FE3FCFC, 0xC879B1B1, 0xEDB65B5B,
0xBED46A6A, 0x468DCBCB, 0xD967BEBE, 0x4B723939, 0xDE944A4A, 0xD4984C4C, 0xE8B05858, 0x4A85CFCF,
0x6BBBD0D0, 0x2AC5EFEF, 0xE54FAAAA, 0x16EDFBFB, 0xC5864343, 0xD79A4D4D, 0x55663333, 0x94118585,
0xCF8A4545, 0x10E9F9F9, 0x06040202, 0x81FE7F7F, 0xF0A05050, 0x44783C3C, 0xBA259F9F, 0xE34BA8A8,
0xF3A25151, 0xFE5DA3A3, 0xC0804040, 0x8A058F8F, 0xAD3F9292, 0xBC219D9D, 0x48703838, 0x04F1F5F5,
0xDF63BCBC, 0xC177B6B6, 0x75AFDADA, 0x63422121, 0x30201010, 0x1AE5FFFF, 0x0EFDF3F3, 0x6DBFD2D2,
0x4C81CDCD, 0x14180C0C, 0x35261313, 0x2FC3ECEC, 0xE1BE5F5F, 0xA2359797, 0xCC884444, 0x392E1717,
0x5793C4C4, 0xF255A7A7, 0x82FC7E7E, 0x477A3D3D, 0xACC86464, 0xE7BA5D5D, 0x2B321919, 0x95E67373,
0xA0C06060, 0x98198181, 0xD19E4F4F, 0x7FA3DCDC, 0x66442222, 0x7E542A2A, 0xAB3B9090, 0x830B8888,
0xCA8C4646, 0x29C7EEEE, 0xD36BB8B8, 0x3C281414, 0x79A7DEDE, 0xE2BC5E5E, 0x1D160B0B, 0x76ADDBDB,
0x3BDBE0E0, 0x56643232, 0x4E743A3A, 0x1E140A0A, 0xDB924949, 0x0A0C0606, 0x6C482424, 0xE4B85C5C,
0x5D9FC2C2, 0x6EBDD3D3, 0xEF43ACAC, 0xA6C46262, 0xA8399191, 0xA4319595, 0x37D3E4E4, 0x8BF27979,
0x32D5E7E7, 0x438BC8C8, 0x596E3737, 0xB7DA6D6D, 0x8C018D8D, 0x64B1D5D5, 0xD29C4E4E, 0xE049A9A9,
0xB4D86C6C, 0xFAAC5656, 0x07F3F4F4, 0x25CFEAEA, 0xAFCA6565, 0x8EF47A7A, 0xE947AEAE, 0x18100808,
0xD56FBABA, 0x88F07878, 0x6F4A2525, 0x725C2E2E, 0x24381C1C, 0xF157A6A6, 0xC773B4B4, 0x5197C6C6,
0x23CBE8E8, 0x7CA1DDDD, 0x9CE87474, 0x213E1F1F, 0xDD964B4B, 0xDC61BDBD, 0x860D8B8B, 0x850F8A8A,
0x90E07070, 0x427C3E3E, 0xC471B5B5, 0xAACC6666, 0xD8904848, 0x05060303, 0x01F7F6F6, 0x121C0E0E,
0xA3C26161, 0x5F6A3535, 0xF9AE5757, 0xD069B9B9, 0x91178686, 0x5899C1C1, 0x273A1D1D, 0xB9279E9E,
0x38D9E1E1, 0x13EBF8F8, 0xB32B9898, 0x33221111, 0xBBD26969, 0x70A9D9D9, 0x89078E8E, 0xA7339494,
0xB62D9B9B, 0x223C1E1E, 0x92158787, 0x20C9E9E9, 0x4987CECE, 0xFFAA5555, 0x78502828, 0x7AA5DFDF,
0x8F038C8C, 0xF859A1A1, 0x80098989, 0x171A0D0D, 0xDA65BFBF, 0x31D7E6E6, 0xC6844242, 0xB8D06868,
0xC3824141, 0xB0299999, 0x775A2D2D, 0x111E0F0F, 0xCB7BB0B0, 0xFCA85454, 0xD66DBBBB, 0x3A2C1616,
};
static CONST_TABLE(u4_t, AES_E3)[256] = {
0x63A5C663, 0x7C84F87C, 0x7799EE77, 0x7B8DF67B, 0xF20DFFF2, 0x6BBDD66B, 0x6FB1DE6F, 0xC55491C5,
0x30506030, 0x01030201, 0x67A9CE67, 0x2B7D562B, 0xFE19E7FE, 0xD762B5D7, 0xABE64DAB, 0x769AEC76,
0xCA458FCA, 0x829D1F82, 0xC94089C9, 0x7D87FA7D, 0xFA15EFFA, 0x59EBB259, 0x47C98E47, 0xF00BFBF0,
0xADEC41AD, 0xD467B3D4, 0xA2FD5FA2, 0xAFEA45AF, 0x9CBF239C, 0xA4F753A4, 0x7296E472, 0xC05B9BC0,
0xB7C275B7, 0xFD1CE1FD, 0x93AE3D93, 0x266A4C26, 0x365A6C36, 0x3F417E3F, 0xF702F5F7, 0xCC4F83CC,
0x345C6834, 0xA5F451A5, 0xE534D1E5, 0xF108F9F1, 0x7193E271, 0xD873ABD8, 0x31536231, 0x153F2A15,
0x040C0804, 0xC75295C7, 0x23654623, 0xC35E9DC3, 0x18283018, 0x96A13796, 0x050F0A05, 0x9AB52F9A,
0x07090E07, 0x12362412, 0x809B1B80, 0xE23DDFE2, 0xEB26CDEB, 0x27694E27, 0xB2CD7FB2, 0x759FEA75,
0x091B1209, 0x839E1D83, 0x2C74582C, 0x1A2E341A, 0x1B2D361B, 0x6EB2DC6E, 0x5AEEB45A, 0xA0FB5BA0,
0x52F6A452, 0x3B4D763B, 0xD661B7D6, 0xB3CE7DB3, 0x297B5229, 0xE33EDDE3, 0x2F715E2F, 0x84971384,
0x53F5A653, 0xD168B9D1, 0x00000000, 0xED2CC1ED, 0x20604020, 0xFC1FE3FC, 0xB1C879B1, 0x5BEDB65B,
0x6ABED46A, 0xCB468DCB, 0xBED967BE, 0x394B7239, 0x4ADE944A, 0x4CD4984C, 0x58E8B058, 0xCF4A85CF,
0xD06BBBD0, 0xEF2AC5EF, 0xAAE54FAA, 0xFB16EDFB, 0x43C58643, 0x4DD79A4D, 0x33556633, 0x85941185,
0x45CF8A45, 0xF910E9F9, 0x02060402, 0x7F81FE7F, 0x50F0A050, 0x3C44783C, 0x9FBA259F, 0xA8E34BA8,
0x51F3A251, 0xA3FE5DA3, 0x40C08040, 0x8F8A058F, 0x92AD3F92, 0x9DBC219D, 0x38487038, 0xF504F1F5,
0xBCDF63BC, 0xB6C177B6, 0xDA75AFDA, 0x21634221, 0x10302010, 0xFF1AE5FF, 0xF30EFDF3, 0xD26DBFD2,
0xCD4C81CD, 0x0C14180C, 0x13352613, 0xEC2FC3EC, 0x5FE1BE5F, 0x97A23597, 0x44CC8844, 0x17392E17,
0xC45793C4, 0xA7F255A7, 0x7E82FC7E, 0x3D477A3D, 0x64ACC864, 0x5DE7BA5D, 0x192B3219, 0x7395E673,
0x60A0C060, 0x81981981, 0x4FD19E4F, 0xDC7FA3DC, 0x22664422, 0x2A7E542A, 0x90AB3B90, 0x88830B88,
0x46CA8C46, 0xEE29C7EE, 0xB8D36BB8, 0x143C2814, 0xDE79A7DE, 0x5EE2BC5E, 0x0B1D160B, 0xDB76ADDB,
0xE03BDBE0, 0x32566432, 0x3A4E743A, 0x0A1E140A, 0x49DB9249, 0x060A0C06, 0x246C4824, 0x5CE4B85C,
0xC25D9FC2, 0xD36EBDD3, 0xACEF43AC, 0x62A6C462, 0x91A83991, 0x95A43195, 0xE437D3E4, 0x798BF279,
0xE732D5E7, 0xC8438BC8, 0x37596E37, 0x6DB7DA6D, 0x8D8C018D, 0xD564B1D5, 0x4ED29C4E, 0xA9E049A9,
0x6CB4D86C, 0x56FAAC56, 0xF407F3F4, 0xEA25CFEA, 0x65AFCA65, 0x7A8EF47A, 0xAEE947AE, 0x08181008,
0xBAD56FBA, 0x7888F078, 0x256F4A25, 0x2E725C2E, 0x1C24381C, 0xA6F157A6, 0xB4C773B4, 0xC65197C6,
0xE823CBE8, 0xDD7CA1DD, 0x749CE874, 0x1F213E1F, 0x4BDD964B, 0xBDDC61BD, 0x8B860D8B, 0x8A850F8A,
0x7090E070, 0x3E427C3E, 0xB5C471B5, 0x66AACC66, 0x48D89048, 0x03050603, 0xF601F7F6, 0x0E121C0E,
0x61A3C261, 0x355F6A35, 0x57F9AE57, 0xB9D069B9, 0x86911786, 0xC15899C1, 0x1D273A1D, 0x9EB9279E,
0xE138D9E1, 0xF813EBF8, 0x98B32B98, 0x11332211, 0x69BBD269, 0xD970A9D9, 0x8E89078E, 0x94A73394,
0x9BB62D9B, 0x1E223C1E, 0x87921587, 0xE920C9E9, 0xCE4987CE, 0x55FFAA55, 0x28785028, 0xDF7AA5DF,
0x8C8F038C, 0xA1F859A1, 0x89800989, 0x0D171A0D, 0xBFDA65BF, 0xE631D7E6, 0x42C68442, 0x68B8D068,
0x41C38241, 0x99B02999, 0x2D775A2D, 0x0F111E0F, 0xB0CB7BB0, 0x54FCA854, 0xBBD66DBB, 0x163A2C16,
};
static CONST_TABLE(u4_t, AES_E4)[256] = {
0x6363A5C6, 0x7C7C84F8, 0x777799EE, 0x7B7B8DF6, 0xF2F20DFF, 0x6B6BBDD6, 0x6F6FB1DE, 0xC5C55491,
0x30305060, 0x01010302, 0x6767A9CE, 0x2B2B7D56, 0xFEFE19E7, 0xD7D762B5, 0xABABE64D, 0x76769AEC,
0xCACA458F, 0x82829D1F, 0xC9C94089, 0x7D7D87FA, 0xFAFA15EF, 0x5959EBB2, 0x4747C98E, 0xF0F00BFB,
0xADADEC41, 0xD4D467B3, 0xA2A2FD5F, 0xAFAFEA45, 0x9C9CBF23, 0xA4A4F753, 0x727296E4, 0xC0C05B9B,
0xB7B7C275, 0xFDFD1CE1, 0x9393AE3D, 0x26266A4C, 0x36365A6C, 0x3F3F417E, 0xF7F702F5, 0xCCCC4F83,
0x34345C68, 0xA5A5F451, 0xE5E534D1, 0xF1F108F9, 0x717193E2, 0xD8D873AB, 0x31315362, 0x15153F2A,
0x04040C08, 0xC7C75295, 0x23236546, 0xC3C35E9D, 0x18182830, 0x9696A137, 0x05050F0A, 0x9A9AB52F,
0x0707090E, 0x12123624, 0x80809B1B, 0xE2E23DDF, 0xEBEB26CD, 0x2727694E, 0xB2B2CD7F, 0x75759FEA,
0x09091B12, 0x83839E1D, 0x2C2C7458, 0x1A1A2E34, 0x1B1B2D36, 0x6E6EB2DC, 0x5A5AEEB4, 0xA0A0FB5B,
0x5252F6A4, 0x3B3B4D76, 0xD6D661B7, 0xB3B3CE7D, 0x29297B52, 0xE3E33EDD, 0x2F2F715E, 0x84849713,
0x5353F5A6, 0xD1D168B9, 0x00000000, 0xEDED2CC1, 0x20206040, 0xFCFC1FE3, 0xB1B1C879, 0x5B5BEDB6,
0x6A6ABED4, 0xCBCB468D, 0xBEBED967, 0x39394B72, 0x4A4ADE94, 0x4C4CD498, 0x5858E8B0, 0xCFCF4A85,
0xD0D06BBB, 0xEFEF2AC5, 0xAAAAE54F, 0xFBFB16ED, 0x4343C586, 0x4D4DD79A, 0x33335566, 0x85859411,
0x4545CF8A, 0xF9F910E9, 0x02020604, 0x7F7F81FE, 0x5050F0A0, 0x3C3C4478, 0x9F9FBA25, 0xA8A8E34B,
0x5151F3A2, 0xA3A3FE5D, 0x4040C080, 0x8F8F8A05, 0x9292AD3F, 0x9D9DBC21, 0x38384870, 0xF5F504F1,
0xBCBCDF63, 0xB6B6C177, 0xDADA75AF, 0x21216342, 0x10103020, 0xFFFF1AE5, 0xF3F30EFD, 0xD2D26DBF,
0xCDCD4C81, 0x0C0C1418, 0x13133526, 0xECEC2FC3, 0x5F5FE1BE, 0x9797A235, 0x4444CC88, 0x1717392E,
0xC4C45793, 0xA7A7F255, 0x7E7E82FC, 0x3D3D477A, 0x6464ACC8, 0x5D5DE7BA, 0x19192B32, 0x737395E6,
0x6060A0C0, 0x81819819, 0x4F4FD19E, 0xDCDC7FA3, 0x22226644, 0x2A2A7E54, 0x9090AB3B, 0x8888830B,
0x4646CA8C, 0xEEEE29C7, 0xB8B8D36B, 0x14143C28, 0xDEDE79A7, 0x5E5EE2BC, 0x0B0B1D16, 0xDBDB76AD,
0xE0E03BDB, 0x32325664, 0x3A3A4E74, 0x0A0A1E14, 0x4949DB92, 0x06060A0C, 0x24246C48, 0x5C5CE4B8,
0xC2C25D9F, 0xD3D36EBD, 0xACACEF43, 0x6262A6C4, 0x9191A839, 0x9595A431, 0xE4E437D3, 0x79798BF2,
0xE7E732D5, 0xC8C8438B, 0x3737596E, 0x6D6DB7DA, 0x8D8D8C01, 0xD5D564B1, 0x4E4ED29C, 0xA9A9E049,
0x6C6CB4D8, 0x5656FAAC, 0xF4F407F3, 0xEAEA25CF, 0x6565AFCA, 0x7A7A8EF4, 0xAEAEE947, 0x08081810,
0xBABAD56F, 0x787888F0, 0x25256F4A, 0x2E2E725C, 0x1C1C2438, 0xA6A6F157, 0xB4B4C773, 0xC6C65197,
0xE8E823CB, 0xDDDD7CA1, 0x74749CE8, 0x1F1F213E, 0x4B4BDD96, 0xBDBDDC61, 0x8B8B860D, 0x8A8A850F,
0x707090E0, 0x3E3E427C, 0xB5B5C471, 0x6666AACC, 0x4848D890, 0x03030506, 0xF6F601F7, 0x0E0E121C,
0x6161A3C2, 0x35355F6A, 0x5757F9AE, 0xB9B9D069, 0x86869117, 0xC1C15899, 0x1D1D273A, 0x9E9EB927,
0xE1E138D9, 0xF8F813EB, 0x9898B32B, 0x11113322, 0x6969BBD2, 0xD9D970A9, 0x8E8E8907, 0x9494A733,
0x9B9BB62D, 0x1E1E223C, 0x87879215, 0xE9E920C9, 0xCECE4987, 0x5555FFAA, 0x28287850, 0xDFDF7AA5,
0x8C8C8F03, 0xA1A1F859, 0x89898009, 0x0D0D171A, 0xBFBFDA65, 0xE6E631D7, 0x4242C684, 0x6868B8D0,
0x4141C382, 0x9999B029, 0x2D2D775A, 0x0F0F111E, 0xB0B0CB7B, 0x5454FCA8, 0xBBBBD66D, 0x16163A2C,
};
#define msbf4_read(p) ((p)[0]<<24 | (p)[1]<<16 | (p)[2]<<8 | (p)[3])
#define msbf4_write(p,v) (p)[0]=(v)>>24,(p)[1]=(v)>>16,(p)[2]=(v)>>8,(p)[3]=(v)
#define swapmsbf(x) ( (x&0xFF)<<24 | (x&0xFF00)<<8 | (x&0xFF0000)>>8 | (x>>24) )
#define u1(v) ((u1_t)(v))
#define AES_key4(r1,r2,r3,r0,i) r1 = ki[i+1]; \
r2 = ki[i+2]; \
r3 = ki[i+3]; \
r0 = ki[i]
#define AES_expr4(r1,r2,r3,r0,i) r1 ^= TABLE_GET_U4(AES_E4, u1(i)); \
r2 ^= TABLE_GET_U4(AES_E3, u1(i>>8)); \
r3 ^= TABLE_GET_U4(AES_E2, u1(i>>16)); \
r0 ^= TABLE_GET_U4(AES_E1, (i>>24))
#define AES_expr(a,r0,r1,r2,r3,i) a = ki[i]; \
a ^= ((u4_t)TABLE_GET_U1(AES_S, r0>>24 )<<24); \
a ^= ((u4_t)TABLE_GET_U1(AES_S, u1(r1>>16))<<16); \
a ^= ((u4_t)TABLE_GET_U1(AES_S, u1(r2>> 8))<< 8); \
a ^= (u4_t)TABLE_GET_U1(AES_S, u1(r3) )
// global area for passing parameters (aux, key) and for storing round keys
u4_t AESAUX[16/sizeof(u4_t)];
u4_t AESKEY[11*16/sizeof(u4_t)];
// generate 1+10 roundkeys for encryption with 128-bit key
// read 128-bit key from AESKEY in MSBF, generate roundkey words in place
static void aesroundkeys () {
int i;
u4_t b;
for( i=0; i<4; i++) {
AESKEY[i] = swapmsbf(AESKEY[i]);
}
b = AESKEY[3];
for( ; i<44; i++ ) {
if( i%4==0 ) {
// b = SubWord(RotWord(b)) xor Rcon[i/4]
b = ((u4_t)TABLE_GET_U1(AES_S, u1(b >> 16)) << 24) ^
((u4_t)TABLE_GET_U1(AES_S, u1(b >> 8)) << 16) ^
((u4_t)TABLE_GET_U1(AES_S, u1(b) ) << 8) ^
((u4_t)TABLE_GET_U1(AES_S, b >> 24 ) ) ^
TABLE_GET_U4(AES_RCON, (i-4)/4);
}
AESKEY[i] = b ^= AESKEY[i-4];
}
}
u4_t os_aes (u1_t mode, xref2u1_t buf, u2_t len) {
aesroundkeys();
if( mode & AES_MICNOAUX ) {
AESAUX[0] = AESAUX[1] = AESAUX[2] = AESAUX[3] = 0;
} else {
AESAUX[0] = swapmsbf(AESAUX[0]);
AESAUX[1] = swapmsbf(AESAUX[1]);
AESAUX[2] = swapmsbf(AESAUX[2]);
AESAUX[3] = swapmsbf(AESAUX[3]);
}
while( (signed char)len > 0 ) {
u4_t a0, a1, a2, a3;
u4_t t0, t1, t2, t3;
u4_t *ki, *ke;
// load input block
if( (mode & AES_CTR) || ((mode & AES_MIC) && (mode & AES_MICNOAUX)==0) ) { // load CTR block or first MIC block
a0 = AESAUX[0];
a1 = AESAUX[1];
a2 = AESAUX[2];
a3 = AESAUX[3];
}
else if( (mode & AES_MIC) && len <= 16 ) { // last MIC block
a0 = a1 = a2 = a3 = 0; // load null block
mode |= ((len == 16) ? 1 : 2) << 4; // set MICSUB: CMAC subkey K1 or K2
} else
LOADDATA: { // load data block (partially)
for(t0=0; t0<16; t0++) {
t1 = (t1<<8) | ((t0<len) ? buf[t0] : (t0==len) ? 0x80 : 0x00);
if((t0&3)==3) {
a0 = a1;
a1 = a2;
a2 = a3;
a3 = t1;
}
}
if( mode & AES_MIC ) {
a0 ^= AESAUX[0];
a1 ^= AESAUX[1];
a2 ^= AESAUX[2];
a3 ^= AESAUX[3];
}
}
// perform AES encryption on block in a0-a3
ki = AESKEY;
ke = ki + 8*4;
a0 ^= ki[0];
a1 ^= ki[1];
a2 ^= ki[2];
a3 ^= ki[3];
do {
AES_key4 (t1,t2,t3,t0,4);
AES_expr4(t1,t2,t3,t0,a0);
AES_expr4(t2,t3,t0,t1,a1);
AES_expr4(t3,t0,t1,t2,a2);
AES_expr4(t0,t1,t2,t3,a3);
AES_key4 (a1,a2,a3,a0,8);
AES_expr4(a1,a2,a3,a0,t0);
AES_expr4(a2,a3,a0,a1,t1);
AES_expr4(a3,a0,a1,a2,t2);
AES_expr4(a0,a1,a2,a3,t3);
} while( (ki+=8) < ke );
AES_key4 (t1,t2,t3,t0,4);
AES_expr4(t1,t2,t3,t0,a0);
AES_expr4(t2,t3,t0,t1,a1);
AES_expr4(t3,t0,t1,t2,a2);
AES_expr4(t0,t1,t2,t3,a3);
AES_expr(a0,t0,t1,t2,t3,8);
AES_expr(a1,t1,t2,t3,t0,9);
AES_expr(a2,t2,t3,t0,t1,10);
AES_expr(a3,t3,t0,t1,t2,11);
// result of AES encryption in a0-a3
if( mode & AES_MIC ) {
if( (t1 = (mode & AES_MICSUB) >> 4) != 0 ) { // last block
do {
// compute CMAC subkey K1 and K2
t0 = a0 >> 31; // save MSB
a0 = (a0 << 1) | (a1 >> 31);
a1 = (a1 << 1) | (a2 >> 31);
a2 = (a2 << 1) | (a3 >> 31);
a3 = (a3 << 1);
if( t0 ) a3 ^= 0x87;
} while( --t1 );
AESAUX[0] ^= a0;
AESAUX[1] ^= a1;
AESAUX[2] ^= a2;
AESAUX[3] ^= a3;
mode &= ~AES_MICSUB;
goto LOADDATA;
} else {
// save cipher block as new iv
AESAUX[0] = a0;
AESAUX[1] = a1;
AESAUX[2] = a2;
AESAUX[3] = a3;
}
} else { // CIPHER
if( mode & AES_CTR ) { // xor block (partially)
t0 = (len > 16) ? 16: len;
for(t1=0; t1<t0; t1++) {
buf[t1] ^= (a0>>24);
a0 <<= 8;
if((t1&3)==3) {
a0 = a1;
a1 = a2;
a2 = a3;
}
}
// update counter
AESAUX[3]++;
} else { // ECB
// store block
msbf4_write(buf+0, a0);
msbf4_write(buf+4, a1);
msbf4_write(buf+8, a2);
msbf4_write(buf+12, a3);
}
}
// update block state
if( (mode & AES_MIC)==0 || (mode & AES_MICNOAUX) ) {
buf += 16;
len -= 16;
}
mode |= AES_MICNOAUX;
}
return AESAUX[0];
}

@ -1,83 +0,0 @@
#ifndef _lmic_config_h_
#define _lmic_config_h_
// In the original LMIC code, these config values were defined on the
// gcc commandline. Since Arduino does not allow easily modifying the
// compiler commandline, use this file instead.
#define CFG_eu868 1
//#define CFG_us915 1
// This is the SX1272/SX1273 radio, which is also used on the HopeRF
// RFM92 boards.
//#define CFG_sx1272_radio 1
// This is the SX1276/SX1277/SX1278/SX1279 radio, which is also used on
// the HopeRF RFM95 boards.
#define CFG_sx1276_radio 1
// 16 μs per tick
// LMIC requires ticks to be 15.5μs - 100 μs long
#define US_PER_OSTICK_EXPONENT 4
#define US_PER_OSTICK (1 << US_PER_OSTICK_EXPONENT)
#define OSTICKS_PER_SEC (1000000 / US_PER_OSTICK)
// Set this to 1 to enable some basic debug output (using printf) about
// RF settings used during transmission and reception. Set to 2 to
// enable more verbose output. Make sure that printf is actually
// configured (e.g. on AVR it is not by default), otherwise using it can
// cause crashing.
#define LMIC_DEBUG_LEVEL 0
// Enable this to allow using printf() to print to the given serial port
// (or any other Print object). This can be easy for debugging. The
// current implementation only works on AVR, though.
//#define LMIC_PRINTF_TO Serial
// Any runtime assertion failures are printed to this serial port (or
// any other Print object). If this is unset, any failures just silently
// halt execution.
#define LMIC_FAILURE_TO Serial
// Uncomment this to disable all code related to joining
//#define DISABLE_JOIN
// Uncomment this to disable all code related to ping
//#define DISABLE_PING
// Uncomment this to disable all code related to beacon tracking.
// Requires ping to be disabled too
//#define DISABLE_BEACONS
// Uncomment these to disable the corresponding MAC commands.
// Class A
//#define DISABLE_MCMD_DCAP_REQ // duty cycle cap
//#define DISABLE_MCMD_DN2P_SET // 2nd DN window param
//#define DISABLE_MCMD_SNCH_REQ // set new channel
// Class B
//#define DISABLE_MCMD_PING_SET // set ping freq, automatically disabled by DISABLE_PING
//#define DISABLE_MCMD_BCNI_ANS // next beacon start, automatical disabled by DISABLE_BEACON
// In LoRaWAN, a gateway applies I/Q inversion on TX, and nodes do the
// same on RX. This ensures that gateways can talk to nodes and vice
// versa, but gateways will not hear other gateways and nodes will not
// hear other nodes. By uncommenting this macro, this inversion is
// disabled and this node can hear other nodes. If two nodes both have
// this macro set, they can talk to each other (but they can no longer
// hear gateways). This should probably only be used when debugging
// and/or when talking to the radio directly (e.g. like in the "raw"
// example).
//#define DISABLE_INVERT_IQ_ON_RX
// This allows choosing between multiple included AES implementations.
// Make sure exactly one of these is uncommented.
//
// This selects the original AES implementation included LMIC. This
// implementation is optimized for speed on 32-bit processors using
// fairly big lookup tables, but it takes up big amounts of flash on the
// AVR architecture.
// #define USE_ORIGINAL_AES
//
// This selects the AES implementation written by Ideetroon for their
// own LoRaWAN library. It also uses lookup tables, but smaller
// byte-oriented ones, making it use a lot less flash space (but it is
// also about twice as slow as the original).
#define USE_IDEETRON_AES
#endif // _lmic_config_h_

@ -1,91 +0,0 @@
/*******************************************************************************
* Copyright (c) 2014-2015 IBM Corporation.
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Eclipse Public License v1.0
* which accompanies this distribution, and is available at
* http://www.eclipse.org/legal/epl-v10.html
*
* Contributors:
* IBM Zurich Research Lab - initial API, implementation and documentation
*******************************************************************************/
#ifndef _hal_hpp_
#define _hal_hpp_
#ifdef __cplusplus
extern "C"{
#endif
/*
* initialize hardware (IO, SPI, TIMER, IRQ).
*/
void hal_init (void);
/*
* drive radio NSS pin (0=low, 1=high).
*/
void hal_pin_nss (u1_t val);
/*
* drive radio RX/TX pins (0=rx, 1=tx).
*/
void hal_pin_rxtx (u1_t val);
/*
* control radio RST pin (0=low, 1=high, 2=floating)
*/
void hal_pin_rst (u1_t val);
/*
* perform 8-bit SPI transaction with radio.
* - write given byte 'outval'
* - read byte and return value
*/
u1_t hal_spi (u1_t outval);
/*
* disable all CPU interrupts.
* - might be invoked nested
* - will be followed by matching call to hal_enableIRQs()
*/
void hal_disableIRQs (void);
/*
* enable CPU interrupts.
*/
void hal_enableIRQs (void);
/*
* put system and CPU in low-power mode, sleep until interrupt.
*/
void hal_sleep (void);
/*
* return 32-bit system time in ticks.
*/
u4_t hal_ticks (void);
/*
* busy-wait until specified timestamp (in ticks) is reached.
*/
void hal_waitUntil (u4_t time);
/*
* check and rewind timer for target time.
* - return 1 if target time is close
* - otherwise rewind timer for target time or full period and return 0
*/
u1_t hal_checkTimer (u4_t targettime);
/*
* perform fatal failure action.
* - called by assertions
* - action could be HALT or reboot
*/
void hal_failed (const char *file, u2_t line);
#ifdef __cplusplus
} // extern "C"
#endif
#endif // _hal_hpp_

File diff suppressed because it is too large Load Diff

@ -1,320 +0,0 @@
/*******************************************************************************
* Copyright (c) 2014-2015 IBM Corporation.
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Eclipse Public License v1.0
* which accompanies this distribution, and is available at
* http://www.eclipse.org/legal/epl-v10.html
*
* Contributors:
* IBM Zurich Research Lab - initial API, implementation and documentation
*******************************************************************************/
//! @file
//! @brief LMIC API
#ifndef _lmic_h_
#define _lmic_h_
#include "oslmic.h"
#include "lorabase.h"
#ifdef __cplusplus
extern "C"{
#endif
// LMIC version
#define LMIC_VERSION_MAJOR 1
#define LMIC_VERSION_MINOR 5
#define LMIC_VERSION_BUILD 1431528305
enum { MAX_FRAME_LEN = 64 }; //!< Library cap on max frame length
enum { TXCONF_ATTEMPTS = 8 }; //!< Transmit attempts for confirmed frames
enum { MAX_MISSED_BCNS = 20 }; // threshold for triggering rejoin requests
enum { MAX_RXSYMS = 100 }; // stop tracking beacon beyond this
enum { LINK_CHECK_CONT = 12 , // continue with this after reported dead link
LINK_CHECK_DEAD = 24 , // after this UP frames and no response from NWK assume link is dead
LINK_CHECK_INIT = -12 , // UP frame count until we inc datarate
LINK_CHECK_OFF =-128 }; // link check disabled
enum { TIME_RESYNC = 6*128 }; // secs
enum { TXRX_GUARD_ms = 6000 }; // msecs - don't start TX-RX transaction before beacon
enum { JOIN_GUARD_ms = 9000 }; // msecs - don't start Join Req/Acc transaction before beacon
enum { TXRX_BCNEXT_secs = 2 }; // secs - earliest start after beacon time
enum { RETRY_PERIOD_secs = 3 }; // secs - random period for retrying a confirmed send
#if defined(CFG_eu868) // EU868 spectrum ====================================================
enum { MAX_CHANNELS = 16 }; //!< Max supported channels
enum { MAX_BANDS = 4 };
enum { LIMIT_CHANNELS = (1<<4) }; // EU868 will never have more channels
//! \internal
struct band_t {
u2_t txcap; // duty cycle limitation: 1/txcap
s1_t txpow; // maximum TX power
u1_t lastchnl; // last used channel
ostime_t avail; // channel is blocked until this time
};
TYPEDEF_xref2band_t; //!< \internal
#elif defined(CFG_us915) // US915 spectrum =================================================
enum { MAX_XCHANNELS = 2 }; // extra channels in RAM, channels 0-71 are immutable
enum { MAX_TXPOW_125kHz = 30 };
#endif // ==========================================================================
// Keep in sync with evdefs.hpp::drChange
enum { DRCHG_SET, DRCHG_NOJACC, DRCHG_NOACK, DRCHG_NOADRACK, DRCHG_NWKCMD };
enum { KEEP_TXPOW = -128 };
#if !defined(DISABLE_PING)
//! \internal
struct rxsched_t {
u1_t dr;
u1_t intvExp; // 0..7
u1_t slot; // runs from 0 to 128
u1_t rxsyms;
ostime_t rxbase;
ostime_t rxtime; // start of next spot
u4_t freq;
};
TYPEDEF_xref2rxsched_t; //!< \internal
#endif // !DISABLE_PING
#if !defined(DISABLE_BEACONS)
//! Parsing and tracking states of beacons.
enum { BCN_NONE = 0x00, //!< No beacon received
BCN_PARTIAL = 0x01, //!< Only first (common) part could be decoded (info,lat,lon invalid/previous)
BCN_FULL = 0x02, //!< Full beacon decoded
BCN_NODRIFT = 0x04, //!< No drift value measured yet
BCN_NODDIFF = 0x08 }; //!< No differential drift measured yet
//! Information about the last and previous beacons.
struct bcninfo_t {
ostime_t txtime; //!< Time when the beacon was sent
s1_t rssi; //!< Adjusted RSSI value of last received beacon
s1_t snr; //!< Scaled SNR value of last received beacon
u1_t flags; //!< Last beacon reception and tracking states. See BCN_* values.
u4_t time; //!< GPS time in seconds of last beacon (received or surrogate)
//
u1_t info; //!< Info field of last beacon (valid only if BCN_FULL set)
s4_t lat; //!< Lat field of last beacon (valid only if BCN_FULL set)
s4_t lon; //!< Lon field of last beacon (valid only if BCN_FULL set)
};
#endif // !DISABLE_BEACONS
// purpose of receive window - lmic_t.rxState
enum { RADIO_RST=0, RADIO_TX=1, RADIO_RX=2, RADIO_RXON=3 };
// Netid values / lmic_t.netid
enum { NETID_NONE=(int)~0U, NETID_MASK=(int)0xFFFFFF };
// MAC operation modes (lmic_t.opmode).
enum { OP_NONE = 0x0000,
OP_SCAN = 0x0001, // radio scan to find a beacon
OP_TRACK = 0x0002, // track my networks beacon (netid)
OP_JOINING = 0x0004, // device joining in progress (blocks other activities)
OP_TXDATA = 0x0008, // TX user data (buffered in pendTxData)
OP_POLL = 0x0010, // send empty UP frame to ACK confirmed DN/fetch more DN data
OP_REJOIN = 0x0020, // occasionally send JOIN REQUEST
OP_SHUTDOWN = 0x0040, // prevent MAC from doing anything
OP_TXRXPEND = 0x0080, // TX/RX transaction pending
OP_RNDTX = 0x0100, // prevent TX lining up after a beacon
OP_PINGINI = 0x0200, // pingable is initialized and scheduling active
OP_PINGABLE = 0x0400, // we're pingable
OP_NEXTCHNL = 0x0800, // find a new channel
OP_LINKDEAD = 0x1000, // link was reported as dead
OP_TESTMODE = 0x2000, // developer test mode
};
// TX-RX transaction flags - report back to user
enum { TXRX_ACK = 0x80, // confirmed UP frame was acked
TXRX_NACK = 0x40, // confirmed UP frame was not acked
TXRX_NOPORT = 0x20, // set if a frame with a port was RXed, clr if no frame/no port
TXRX_PORT = 0x10, // set if a frame with a port was RXed, LMIC.frame[LMIC.dataBeg-1] => port
TXRX_DNW1 = 0x01, // received in 1st DN slot
TXRX_DNW2 = 0x02, // received in 2dn DN slot
TXRX_PING = 0x04 }; // received in a scheduled RX slot
// Event types for event callback
enum _ev_t { EV_SCAN_TIMEOUT=1, EV_BEACON_FOUND,
EV_BEACON_MISSED, EV_BEACON_TRACKED, EV_JOINING,
EV_JOINED, EV_RFU1, EV_JOIN_FAILED, EV_REJOIN_FAILED,
EV_TXCOMPLETE, EV_LOST_TSYNC, EV_RESET,
EV_RXCOMPLETE, EV_LINK_DEAD, EV_LINK_ALIVE };
typedef enum _ev_t ev_t;
enum {
// This value represents 100% error in LMIC.clockError
MAX_CLOCK_ERROR = 65536,
};
struct lmic_t {
// Radio settings TX/RX (also accessed by HAL)
ostime_t txend;
ostime_t rxtime;
u4_t freq;
s1_t rssi;
s1_t snr;
rps_t rps;
u1_t rxsyms;
u1_t dndr;
s1_t txpow; // dBm
osjob_t osjob;
// Channel scheduling
#if defined(CFG_eu868)
band_t bands[MAX_BANDS];
u4_t channelFreq[MAX_CHANNELS];
u2_t channelDrMap[MAX_CHANNELS];
u2_t channelMap;
#elif defined(CFG_us915)
u4_t xchFreq[MAX_XCHANNELS]; // extra channel frequencies (if device is behind a repeater)
u2_t xchDrMap[MAX_XCHANNELS]; // extra channel datarate ranges ---XXX: ditto
u2_t channelMap[(72+MAX_XCHANNELS+15)/16]; // enabled bits
u2_t chRnd; // channel randomizer
#endif
u1_t txChnl; // channel for next TX
u1_t globalDutyRate; // max rate: 1/2^k
ostime_t globalDutyAvail; // time device can send again
u4_t netid; // current network id (~0 - none)
u2_t opmode;
u1_t upRepeat; // configured up repeat
s1_t adrTxPow; // ADR adjusted TX power
u1_t datarate; // current data rate
u1_t errcr; // error coding rate (used for TX only)
u1_t rejoinCnt; // adjustment for rejoin datarate
#if !defined(DISABLE_BEACONS)
s2_t drift; // last measured drift
s2_t lastDriftDiff;
s2_t maxDriftDiff;
#endif
u2_t clockError; // Inaccuracy in the clock. CLOCK_ERROR_MAX
// represents +/-100% error
u1_t pendTxPort;
u1_t pendTxConf; // confirmed data
u1_t pendTxLen; // +0x80 = confirmed
u1_t pendTxData[MAX_LEN_PAYLOAD];
u2_t devNonce; // last generated nonce
u1_t nwkKey[16]; // network session key
u1_t artKey[16]; // application router session key
devaddr_t devaddr;
u4_t seqnoDn; // device level down stream seqno
u4_t seqnoUp;
u1_t dnConf; // dn frame confirm pending: LORA::FCT_ACK or 0
s1_t adrAckReq; // counter until we reset data rate (0=off)
u1_t adrChanged;
u1_t rxDelay; // Rx delay after TX
u1_t margin;
bit_t ladrAns; // link adr adapt answer pending
bit_t devsAns; // device status answer pending
u1_t adrEnabled;
u1_t moreData; // NWK has more data pending
#if !defined(DISABLE_MCMD_DCAP_REQ)
bit_t dutyCapAns; // have to ACK duty cycle settings
#endif
#if !defined(DISABLE_MCMD_SNCH_REQ)
u1_t snchAns; // answer set new channel
#endif
// 2nd RX window (after up stream)
u1_t dn2Dr;
u4_t dn2Freq;
#if !defined(DISABLE_MCMD_DN2P_SET)
u1_t dn2Ans; // 0=no answer pend, 0x80+ACKs
#endif
// Class B state
#if !defined(DISABLE_BEACONS)
u1_t missedBcns; // unable to track last N beacons
u1_t bcninfoTries; // how often to try (scan mode only)
#endif
#if !defined(DISABLE_MCMD_PING_SET) && !defined(DISABLE_PING)
u1_t pingSetAns; // answer set cmd and ACK bits
#endif
#if !defined(DISABLE_PING)
rxsched_t ping; // pingable setup
#endif
// Public part of MAC state
u1_t txCnt;
u1_t txrxFlags; // transaction flags (TX-RX combo)
u1_t dataBeg; // 0 or start of data (dataBeg-1 is port)
u1_t dataLen; // 0 no data or zero length data, >0 byte count of data
u1_t frame[MAX_LEN_FRAME];
#if !defined(DISABLE_BEACONS)
u1_t bcnChnl;
u1_t bcnRxsyms; //
ostime_t bcnRxtime;
bcninfo_t bcninfo; // Last received beacon info
#endif
};
//! \var struct lmic_t LMIC
//! The state of LMIC MAC layer is encapsulated in this variable.
DECLARE_LMIC; //!< \internal
//! Construct a bit map of allowed datarates from drlo to drhi (both included).
#define DR_RANGE_MAP(drlo,drhi) (((u2_t)0xFFFF<<(drlo)) & ((u2_t)0xFFFF>>(15-(drhi))))
#if defined(CFG_eu868)
enum { BAND_MILLI=0, BAND_CENTI=1, BAND_DECI=2, BAND_AUX=3 };
bit_t LMIC_setupBand (u1_t bandidx, s1_t txpow, u2_t txcap);
#endif
bit_t LMIC_setupChannel (u1_t channel, u4_t freq, u2_t drmap, s1_t band);
void LMIC_disableChannel (u1_t channel);
#if defined(CFG_us915)
void LMIC_enableChannel (u1_t channel);
void LMIC_enableSubBand (u1_t band);
void LMIC_disableSubBand (u1_t band);
void LMIC_selectSubBand (u1_t band);
#endif
void LMIC_setDrTxpow (dr_t dr, s1_t txpow); // set default/start DR/txpow
void LMIC_setAdrMode (bit_t enabled); // set ADR mode (if mobile turn off)
#if !defined(DISABLE_JOIN)
bit_t LMIC_startJoining (void);
#endif
void LMIC_shutdown (void);
void LMIC_init (void);
void LMIC_reset (void);
void LMIC_clrTxData (void);
void LMIC_setTxData (void);
int LMIC_setTxData2 (u1_t port, xref2u1_t data, u1_t dlen, u1_t confirmed);
void LMIC_sendAlive (void);
#if !defined(DISABLE_BEACONS)
bit_t LMIC_enableTracking (u1_t tryBcnInfo);
void LMIC_disableTracking (void);
#endif
#if !defined(DISABLE_PING)
void LMIC_stopPingable (void);
void LMIC_setPingable (u1_t intvExp);
#endif
#if !defined(DISABLE_JOIN)
void LMIC_tryRejoin (void);
#endif
void LMIC_setSession (u4_t netid, devaddr_t devaddr, xref2u1_t nwkKey, xref2u1_t artKey);
void LMIC_setLinkCheckMode (bit_t enabled);
void LMIC_setClockError(u2_t error);
// Declare onEvent() function, to make sure any definition will have the
// C conventions, even when in a C++ file.
DECL_ON_LMIC_EVENT;
// Special APIs - for development or testing
// !!!See implementation for caveats!!!
#ifdef __cplusplus
} // extern "C"
#endif
#endif // _lmic_h_

@ -1,391 +0,0 @@
/*******************************************************************************
* Copyright (c) 2014-2015 IBM Corporation.
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Eclipse Public License v1.0
* which accompanies this distribution, and is available at
* http://www.eclipse.org/legal/epl-v10.html
*
* Contributors:
* IBM Zurich Research Lab - initial API, implementation and documentation
*******************************************************************************/
#ifndef _lorabase_h_
#define _lorabase_h_
#ifdef __cplusplus
extern "C"{
#endif
// ================================================================================
// BEG: Keep in sync with lorabase.hpp
//
enum _cr_t { CR_4_5=0, CR_4_6, CR_4_7, CR_4_8 };
enum _sf_t { FSK=0, SF7, SF8, SF9, SF10, SF11, SF12, SFrfu };
enum _bw_t { BW125=0, BW250, BW500, BWrfu };
typedef u1_t cr_t;
typedef u1_t sf_t;
typedef u1_t bw_t;
typedef u1_t dr_t;
// Radio parameter set (encodes SF/BW/CR/IH/NOCRC)
typedef u2_t rps_t;
TYPEDEF_xref2rps_t;
enum { ILLEGAL_RPS = 0xFF };
enum { DR_PAGE_EU868 = 0x00 };
enum { DR_PAGE_US915 = 0x10 };
// Global maximum frame length
enum { STD_PREAMBLE_LEN = 8 };
enum { MAX_LEN_FRAME = 64 };
enum { LEN_DEVNONCE = 2 };
enum { LEN_ARTNONCE = 3 };
enum { LEN_NETID = 3 };
enum { DELAY_JACC1 = 5 }; // in secs
enum { DELAY_DNW1 = 1 }; // in secs down window #1
enum { DELAY_EXTDNW2 = 1 }; // in secs
enum { DELAY_JACC2 = DELAY_JACC1+(int)DELAY_EXTDNW2 }; // in secs
enum { DELAY_DNW2 = DELAY_DNW1 +(int)DELAY_EXTDNW2 }; // in secs down window #1
enum { BCN_INTV_exp = 7 };
enum { BCN_INTV_sec = 1<<BCN_INTV_exp };
enum { BCN_INTV_ms = BCN_INTV_sec*1000L };
enum { BCN_INTV_us = BCN_INTV_ms*1000L };
enum { BCN_RESERVE_ms = 2120 }; // space reserved for beacon and NWK management
enum { BCN_GUARD_ms = 3000 }; // end of beacon period to prevent interference with beacon
enum { BCN_SLOT_SPAN_ms = 30 }; // 2^12 reception slots a this span
enum { BCN_WINDOW_ms = BCN_INTV_ms-(int)BCN_GUARD_ms-(int)BCN_RESERVE_ms };
enum { BCN_RESERVE_us = 2120000 };
enum { BCN_GUARD_us = 3000000 };
enum { BCN_SLOT_SPAN_us = 30000 };
#if defined(CFG_eu868) // ==============================================
enum _dr_eu868_t { DR_SF12=0, DR_SF11, DR_SF10, DR_SF9, DR_SF8, DR_SF7, DR_SF7B, DR_FSK, DR_NONE };
enum { DR_DFLTMIN = DR_SF7 };
enum { DR_PAGE = DR_PAGE_EU868 };
// Default frequency plan for EU 868MHz ISM band
// Bands:
// g1 : 1% 14dBm
// g2 : 0.1% 14dBm
// g3 : 10% 27dBm
// freq band datarates
enum { EU868_F1 = 868100000, // g1 SF7-12
EU868_F2 = 868300000, // g1 SF7-12 FSK SF7/250
EU868_F3 = 868500000, // g1 SF7-12
EU868_F4 = 868850000, // g2 SF7-12
EU868_F5 = 869050000, // g2 SF7-12
EU868_F6 = 869525000, // g3 SF7-12
EU868_J4 = 864100000, // g2 SF7-12 used during join
EU868_J5 = 864300000, // g2 SF7-12 ditto
EU868_J6 = 864500000, // g2 SF7-12 ditto
};
enum { EU868_FREQ_MIN = 863000000,
EU868_FREQ_MAX = 870000000 };
enum { CHNL_PING = 5 };
enum { FREQ_PING = EU868_F6 }; // default ping freq
enum { DR_PING = DR_SF9 }; // default ping DR
enum { CHNL_DNW2 = 5 };
enum { FREQ_DNW2 = EU868_F6 };
enum { DR_DNW2 = DR_SF12 };
enum { CHNL_BCN = 5 };
enum { FREQ_BCN = EU868_F6 };
enum { DR_BCN = DR_SF9 };
enum { AIRTIME_BCN = 144384 }; // micros
enum {
// Beacon frame format EU SF9
OFF_BCN_NETID = 0,
OFF_BCN_TIME = 3,
OFF_BCN_CRC1 = 7,
OFF_BCN_INFO = 8,
OFF_BCN_LAT = 9,
OFF_BCN_LON = 12,
OFF_BCN_CRC2 = 15,
LEN_BCN = 17
};
#elif defined(CFG_us915) // =========================================
enum _dr_us915_t { DR_SF10=0, DR_SF9, DR_SF8, DR_SF7, DR_SF8C, DR_NONE,
// Devices behind a router:
DR_SF12CR=8, DR_SF11CR, DR_SF10CR, DR_SF9CR, DR_SF8CR, DR_SF7CR };
enum { DR_DFLTMIN = DR_SF8C };
enum { DR_PAGE = DR_PAGE_US915 };
// Default frequency plan for US 915MHz
enum { US915_125kHz_UPFBASE = 902300000,
US915_125kHz_UPFSTEP = 200000,
US915_500kHz_UPFBASE = 903000000,
US915_500kHz_UPFSTEP = 1600000,
US915_500kHz_DNFBASE = 923300000,
US915_500kHz_DNFSTEP = 600000
};
enum { US915_FREQ_MIN = 902000000,
US915_FREQ_MAX = 928000000 };
enum { CHNL_PING = 0 }; // used only for default init of state (follows beacon - rotating)
enum { FREQ_PING = US915_500kHz_DNFBASE + CHNL_PING*US915_500kHz_DNFSTEP }; // default ping freq
enum { DR_PING = DR_SF10CR }; // default ping DR
enum { CHNL_DNW2 = 0 };
enum { FREQ_DNW2 = US915_500kHz_DNFBASE + CHNL_DNW2*US915_500kHz_DNFSTEP };
enum { DR_DNW2 = DR_SF12CR };
enum { CHNL_BCN = 0 }; // used only for default init of state (rotating beacon scheme)
enum { DR_BCN = DR_SF10CR };
enum { AIRTIME_BCN = 72192 }; // micros
enum {
// Beacon frame format US SF10
OFF_BCN_NETID = 0,
OFF_BCN_TIME = 3,
OFF_BCN_CRC1 = 7,
OFF_BCN_INFO = 9,
OFF_BCN_LAT = 10,
OFF_BCN_LON = 13,
OFF_BCN_RFU1 = 16,
OFF_BCN_CRC2 = 17,
LEN_BCN = 19
};
#endif // ===================================================
enum {
// Join Request frame format
OFF_JR_HDR = 0,
OFF_JR_ARTEUI = 1,
OFF_JR_DEVEUI = 9,
OFF_JR_DEVNONCE = 17,
OFF_JR_MIC = 19,
LEN_JR = 23
};
enum {
// Join Accept frame format
OFF_JA_HDR = 0,
OFF_JA_ARTNONCE = 1,
OFF_JA_NETID = 4,
OFF_JA_DEVADDR = 7,
OFF_JA_RFU = 11,
OFF_JA_DLSET = 11,
OFF_JA_RXDLY = 12,
OFF_CFLIST = 13,
LEN_JA = 17,
LEN_JAEXT = 17+16
};
enum {
// Data frame format
OFF_DAT_HDR = 0,
OFF_DAT_ADDR = 1,
OFF_DAT_FCT = 5,
OFF_DAT_SEQNO = 6,
OFF_DAT_OPTS = 8,
};
enum { MAX_LEN_PAYLOAD = MAX_LEN_FRAME-(int)OFF_DAT_OPTS-4 };
enum {
// Bitfields in frame format octet
HDR_FTYPE = 0xE0,
HDR_RFU = 0x1C,
HDR_MAJOR = 0x03
};
enum { HDR_FTYPE_DNFLAG = 0x20 }; // flags DN frame except for HDR_FTYPE_PROP
enum {
// Values of frame type bit field
HDR_FTYPE_JREQ = 0x00,
HDR_FTYPE_JACC = 0x20,
HDR_FTYPE_DAUP = 0x40, // data (unconfirmed) up
HDR_FTYPE_DADN = 0x60, // data (unconfirmed) dn
HDR_FTYPE_DCUP = 0x80, // data confirmed up
HDR_FTYPE_DCDN = 0xA0, // data confirmed dn
HDR_FTYPE_REJOIN = 0xC0, // rejoin for roaming
HDR_FTYPE_PROP = 0xE0
};
enum {
HDR_MAJOR_V1 = 0x00,
};
enum {
// Bitfields in frame control octet
FCT_ADREN = 0x80,
FCT_ADRARQ = 0x40,
FCT_ACK = 0x20,
FCT_MORE = 0x10, // also in DN direction: Class B indicator
FCT_OPTLEN = 0x0F,
};
enum {
// In UP direction: signals class B enabled
FCT_CLASSB = FCT_MORE
};
enum {
NWKID_MASK = (int)0xFE000000,
NWKID_BITS = 7
};
// MAC uplink commands downwlink too
enum {
// Class A
MCMD_LCHK_REQ = 0x02, // - link check request : -
MCMD_LADR_ANS = 0x03, // - link ADR answer : u1:7-3:RFU, 3/2/1: pow/DR/Ch ACK
MCMD_DCAP_ANS = 0x04, // - duty cycle answer : -
MCMD_DN2P_ANS = 0x05, // - 2nd DN slot status : u1:7-2:RFU 1/0:datarate/channel ack
MCMD_DEVS_ANS = 0x06, // - device status ans : u1:battery 0,1-254,255=?, u1:7-6:RFU,5-0:margin(-32..31)
MCMD_SNCH_ANS = 0x07, // - set new channel : u1: 7-2=RFU, 1/0:DR/freq ACK
// Class B
MCMD_PING_IND = 0x10, // - pingability indic : u1: 7=RFU, 6-4:interval, 3-0:datarate
MCMD_PING_ANS = 0x11, // - ack ping freq : u1: 7-1:RFU, 0:freq ok
MCMD_BCNI_REQ = 0x12, // - next beacon start : -
};
// MAC downlink commands
enum {
// Class A
MCMD_LCHK_ANS = 0x02, // link check answer : u1:margin 0-254,255=unknown margin / u1:gwcnt
MCMD_LADR_REQ = 0x03, // link ADR request : u1:DR/TXPow, u2:chmask, u1:chpage/repeat
MCMD_DCAP_REQ = 0x04, // duty cycle cap : u1:255 dead [7-4]:RFU, [3-0]:cap 2^-k
MCMD_DN2P_SET = 0x05, // 2nd DN window param: u1:7-4:RFU/3-0:datarate, u3:freq
MCMD_DEVS_REQ = 0x06, // device status req : -
MCMD_SNCH_REQ = 0x07, // set new channel : u1:chidx, u3:freq, u1:DRrange
// Class B
MCMD_PING_SET = 0x11, // set ping freq : u3: freq
MCMD_BCNI_ANS = 0x12, // next beacon start : u2: delay(in TUNIT millis), u1:channel
};
enum {
MCMD_BCNI_TUNIT = 30 // time unit of delay value in millis
};
enum {
MCMD_LADR_ANS_RFU = 0xF8, // RFU bits
MCMD_LADR_ANS_POWACK = 0x04, // 0=not supported power level
MCMD_LADR_ANS_DRACK = 0x02, // 0=unknown data rate
MCMD_LADR_ANS_CHACK = 0x01, // 0=unknown channel enabled
};
enum {
MCMD_DN2P_ANS_RFU = 0xFC, // RFU bits
MCMD_DN2P_ANS_DRACK = 0x02, // 0=unknown data rate
MCMD_DN2P_ANS_CHACK = 0x01, // 0=unknown channel enabled
};
enum {
MCMD_SNCH_ANS_RFU = 0xFC, // RFU bits
MCMD_SNCH_ANS_DRACK = 0x02, // 0=unknown data rate
MCMD_SNCH_ANS_FQACK = 0x01, // 0=rejected channel frequency
};
enum {
MCMD_PING_ANS_RFU = 0xFE,
MCMD_PING_ANS_FQACK = 0x01
};
enum {
MCMD_DEVS_EXT_POWER = 0x00, // external power supply
MCMD_DEVS_BATT_MIN = 0x01, // min battery value
MCMD_DEVS_BATT_MAX = 0xFE, // max battery value
MCMD_DEVS_BATT_NOINFO = 0xFF, // unknown battery level
};
// Bit fields byte#3 of MCMD_LADR_REQ payload
enum {
MCMD_LADR_CHP_125ON = 0x60, // special channel page enable, bits applied to 64..71
MCMD_LADR_CHP_125OFF = 0x70, // ditto
MCMD_LADR_N3RFU_MASK = 0x80,
MCMD_LADR_CHPAGE_MASK = 0xF0,
MCMD_LADR_REPEAT_MASK = 0x0F,
MCMD_LADR_REPEAT_1 = 0x01,
MCMD_LADR_CHPAGE_1 = 0x10
};
// Bit fields byte#0 of MCMD_LADR_REQ payload
enum {
MCMD_LADR_DR_MASK = 0xF0,
MCMD_LADR_POW_MASK = 0x0F,
MCMD_LADR_DR_SHIFT = 4,
MCMD_LADR_POW_SHIFT = 0,
#if defined(CFG_eu868)
MCMD_LADR_SF12 = DR_SF12<<4,
MCMD_LADR_SF11 = DR_SF11<<4,
MCMD_LADR_SF10 = DR_SF10<<4,
MCMD_LADR_SF9 = DR_SF9 <<4,
MCMD_LADR_SF8 = DR_SF8 <<4,
MCMD_LADR_SF7 = DR_SF7 <<4,
MCMD_LADR_SF7B = DR_SF7B<<4,
MCMD_LADR_FSK = DR_FSK <<4,
MCMD_LADR_20dBm = 0,
MCMD_LADR_14dBm = 1,
MCMD_LADR_11dBm = 2,
MCMD_LADR_8dBm = 3,
MCMD_LADR_5dBm = 4,
MCMD_LADR_2dBm = 5,
#elif defined(CFG_us915)
MCMD_LADR_SF10 = DR_SF10<<4,
MCMD_LADR_SF9 = DR_SF9 <<4,
MCMD_LADR_SF8 = DR_SF8 <<4,
MCMD_LADR_SF7 = DR_SF7 <<4,
MCMD_LADR_SF8C = DR_SF8C<<4,
MCMD_LADR_SF12CR = DR_SF12CR<<4,
MCMD_LADR_SF11CR = DR_SF11CR<<4,
MCMD_LADR_SF10CR = DR_SF10CR<<4,
MCMD_LADR_SF9CR = DR_SF9CR<<4,
MCMD_LADR_SF8CR = DR_SF8CR<<4,
MCMD_LADR_SF7CR = DR_SF7CR<<4,
MCMD_LADR_30dBm = 0,
MCMD_LADR_28dBm = 1,
MCMD_LADR_26dBm = 2,
MCMD_LADR_24dBm = 3,
MCMD_LADR_22dBm = 4,
MCMD_LADR_20dBm = 5,
MCMD_LADR_18dBm = 6,
MCMD_LADR_16dBm = 7,
MCMD_LADR_14dBm = 8,
MCMD_LADR_12dBm = 9,
MCMD_LADR_10dBm = 10
#endif
};
// Device address
typedef u4_t devaddr_t;
// RX quality (device)
enum { RSSI_OFF=64, SNR_SCALEUP=4 };
inline sf_t getSf (rps_t params) { return (sf_t)(params & 0x7); }
inline rps_t setSf (rps_t params, sf_t sf) { return (rps_t)((params & ~0x7) | sf); }
inline bw_t getBw (rps_t params) { return (bw_t)((params >> 3) & 0x3); }
inline rps_t setBw (rps_t params, bw_t cr) { return (rps_t)((params & ~0x18) | (cr<<3)); }
inline cr_t getCr (rps_t params) { return (cr_t)((params >> 5) & 0x3); }
inline rps_t setCr (rps_t params, cr_t cr) { return (rps_t)((params & ~0x60) | (cr<<5)); }
inline int getNocrc(rps_t params) { return ((params >> 7) & 0x1); }
inline rps_t setNocrc(rps_t params, int nocrc) { return (rps_t)((params & ~0x80) | (nocrc<<7)); }
inline int getIh (rps_t params) { return ((params >> 8) & 0xFF); }
inline rps_t setIh (rps_t params, int ih) { return (rps_t)((params & ~0xFF00) | (ih<<8)); }
inline rps_t makeRps (sf_t sf, bw_t bw, cr_t cr, int ih, int nocrc) {
return sf | (bw<<3) | (cr<<5) | (nocrc?(1<<7):0) | ((ih&0xFF)<<8);
}
#define MAKERPS(sf,bw,cr,ih,nocrc) ((rps_t)((sf) | ((bw)<<3) | ((cr)<<5) | ((nocrc)?(1<<7):0) | ((ih&0xFF)<<8)))
// Two frames with params r1/r2 would interfere on air: same SFx + BWx
inline int sameSfBw(rps_t r1, rps_t r2) { return ((r1^r2)&0x1F) == 0; }
extern CONST_TABLE(u1_t, _DR2RPS_CRC)[];
inline rps_t updr2rps (dr_t dr) { return (rps_t)TABLE_GET_U1(_DR2RPS_CRC, dr+1); }
inline rps_t dndr2rps (dr_t dr) { return setNocrc(updr2rps(dr),1); }
inline int isFasterDR (dr_t dr1, dr_t dr2) { return dr1 > dr2; }
inline int isSlowerDR (dr_t dr1, dr_t dr2) { return dr1 < dr2; }
inline dr_t incDR (dr_t dr) { return TABLE_GET_U1(_DR2RPS_CRC, dr+2)==ILLEGAL_RPS ? dr : (dr_t)(dr+1); } // increase data rate
inline dr_t decDR (dr_t dr) { return TABLE_GET_U1(_DR2RPS_CRC, dr )==ILLEGAL_RPS ? dr : (dr_t)(dr-1); } // decrease data rate
inline dr_t assertDR (dr_t dr) { return TABLE_GET_U1(_DR2RPS_CRC, dr+1)==ILLEGAL_RPS ? DR_DFLTMIN : dr; } // force into a valid DR
inline bit_t validDR (dr_t dr) { return TABLE_GET_U1(_DR2RPS_CRC, dr+1)!=ILLEGAL_RPS; } // in range
inline dr_t lowerDR (dr_t dr, u1_t n) { while(n--){dr=decDR(dr);} return dr; } // decrease data rate by n steps
//
// BEG: Keep in sync with lorabase.hpp
// ================================================================================
// Convert between dBm values and power codes (MCMD_LADR_XdBm)
s1_t pow2dBm (u1_t mcmd_ladr_p1);
// Calculate airtime
ostime_t calcAirTime (rps_t rps, u1_t plen);
// Sensitivity at given SF/BW
int getSensitivity (rps_t rps);
#ifdef __cplusplus
} // extern "C"
#endif
#endif // _lorabase_h_

@ -1,129 +0,0 @@
/*******************************************************************************
* Copyright (c) 2014-2015 IBM Corporation.
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Eclipse Public License v1.0
* which accompanies this distribution, and is available at
* http://www.eclipse.org/legal/epl-v10.html
*
* Contributors:
* IBM Zurich Research Lab - initial API, implementation and documentation
*******************************************************************************/
#include "lmic.h"
#include <stdbool.h>
// RUNTIME STATE
static struct {
osjob_t* scheduledjobs;
osjob_t* runnablejobs;
} OS;
void os_init () {
memset(&OS, 0x00, sizeof(OS));
hal_init();
radio_init();
LMIC_init();
}
ostime_t os_getTime () {
return hal_ticks();
}
static u1_t unlinkjob (osjob_t** pnext, osjob_t* job) {
for( ; *pnext; pnext = &((*pnext)->next)) {
if(*pnext == job) { // unlink
*pnext = job->next;
return 1;
}
}
return 0;
}
// clear scheduled job
void os_clearCallback (osjob_t* job) {
hal_disableIRQs();
u1_t res = unlinkjob(&OS.scheduledjobs, job) || unlinkjob(&OS.runnablejobs, job);
hal_enableIRQs();
#if LMIC_DEBUG_LEVEL > 1
if (res)
lmic_printf("%lu: Cleared job %p\n", os_getTime(), job);
#endif
}
// schedule immediately runnable job
void os_setCallback (osjob_t* job, osjobcb_t cb) {
osjob_t** pnext;
hal_disableIRQs();
// remove if job was already queued
os_clearCallback(job);
// fill-in job
job->func = cb;
job->next = NULL;
// add to end of run queue
for(pnext=&OS.runnablejobs; *pnext; pnext=&((*pnext)->next));
*pnext = job;
hal_enableIRQs();
#if LMIC_DEBUG_LEVEL > 1
lmic_printf("%lu: Scheduled job %p, cb %p ASAP\n", os_getTime(), job, cb);
#endif
}
// schedule timed job
void os_setTimedCallback (osjob_t* job, ostime_t time, osjobcb_t cb) {
osjob_t** pnext;
hal_disableIRQs();
// remove if job was already queued
os_clearCallback(job);
// fill-in job
job->deadline = time;
job->func = cb;
job->next = NULL;
// insert into schedule
for(pnext=&OS.scheduledjobs; *pnext; pnext=&((*pnext)->next)) {
if((*pnext)->deadline - time > 0) { // (cmp diff, not abs!)
// enqueue before next element and stop
job->next = *pnext;
break;
}
}
*pnext = job;
hal_enableIRQs();
#if LMIC_DEBUG_LEVEL > 1
lmic_printf("%lu: Scheduled job %p, cb %p at %lu\n", os_getTime(), job, cb, time);
#endif
}
// execute jobs from timer and from run queue
void os_runloop () {
while(1) {
os_runloop_once();
}
}
void os_runloop_once() {
#if LMIC_DEBUG_LEVEL > 1
bool has_deadline = false;
#endif
osjob_t* j = NULL;
hal_disableIRQs();
// check for runnable jobs
if(OS.runnablejobs) {
j = OS.runnablejobs;
OS.runnablejobs = j->next;
} else if(OS.scheduledjobs && hal_checkTimer(OS.scheduledjobs->deadline)) { // check for expired timed jobs
j = OS.scheduledjobs;
OS.scheduledjobs = j->next;
#if LMIC_DEBUG_LEVEL > 1
has_deadline = true;
#endif
} else { // nothing pending
hal_sleep(); // wake by irq (timer already restarted)
}
hal_enableIRQs();
if(j) { // run job callback
#if LMIC_DEBUG_LEVEL > 1
lmic_printf("%lu: Running job %p, cb %p, deadline %lu\n", os_getTime(), j, j->func, has_deadline ? j->deadline : 0);
#endif
j->func(j);
}
}

@ -1,288 +0,0 @@
/*******************************************************************************
* Copyright (c) 2014-2015 IBM Corporation.
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Eclipse Public License v1.0
* which accompanies this distribution, and is available at
* http://www.eclipse.org/legal/epl-v10.html
*
* Contributors:
* IBM Zurich Research Lab - initial API, implementation and documentation
*******************************************************************************/
//! \file
#ifndef _oslmic_h_
#define _oslmic_h_
// Dependencies required for the LoRa MAC in C to run.
// These settings can be adapted to the underlying system.
// You should not, however, change the lmic.[hc]
#include "config.h"
#include <stdint.h>
#include <stdio.h>
#ifdef __cplusplus
extern "C"{
#endif
//================================================================================
//================================================================================
// Target platform as C library
typedef uint8_t bit_t;
typedef uint8_t u1_t;
typedef int8_t s1_t;
typedef uint16_t u2_t;
typedef int16_t s2_t;
typedef uint32_t u4_t;
typedef int32_t s4_t;
typedef unsigned int uint;
typedef const char* str_t;
#include <string.h>
#include "hal.h"
#define EV(a,b,c) /**/
#define DO_DEVDB(field1,field2) /**/
#if !defined(CFG_noassert)
#define ASSERT(cond) if(!(cond)) hal_failed(__FILE__, __LINE__)
#else
#define ASSERT(cond) /**/
#endif
#define os_clearMem(a,b) memset(a,0,b)
#define os_copyMem(a,b,c) memcpy(a,b,c)
typedef struct osjob_t osjob_t;
typedef struct band_t band_t;
typedef struct chnldef_t chnldef_t;
typedef struct rxsched_t rxsched_t;
typedef struct bcninfo_t bcninfo_t;
typedef const u1_t* xref2cu1_t;
typedef u1_t* xref2u1_t;
#define TYPEDEF_xref2rps_t typedef rps_t* xref2rps_t
#define TYPEDEF_xref2rxsched_t typedef rxsched_t* xref2rxsched_t
#define TYPEDEF_xref2chnldef_t typedef chnldef_t* xref2chnldef_t
#define TYPEDEF_xref2band_t typedef band_t* xref2band_t
#define TYPEDEF_xref2osjob_t typedef osjob_t* xref2osjob_t
#define SIZEOFEXPR(x) sizeof(x)
#define ON_LMIC_EVENT(ev) onEvent(ev)
#define DECL_ON_LMIC_EVENT void onEvent(ev_t e)
extern u4_t AESAUX[];
extern u4_t AESKEY[];
#define AESkey ((u1_t*)AESKEY)
#define AESaux ((u1_t*)AESAUX)
#define FUNC_ADDR(func) (&(func))
u1_t radio_rand1 (void);
#define os_getRndU1() radio_rand1()
#define DEFINE_LMIC struct lmic_t LMIC
#define DECLARE_LMIC extern struct lmic_t LMIC
void radio_init (void);
void radio_irq_handler (u1_t dio);
void os_init (void);
void os_runloop (void);
void os_runloop_once (void);
//================================================================================
#ifndef RX_RAMPUP
#define RX_RAMPUP (us2osticks(2000))
#endif
#ifndef TX_RAMPUP
#define TX_RAMPUP (us2osticks(2000))
#endif
#ifndef OSTICKS_PER_SEC
#define OSTICKS_PER_SEC 32768
#elif OSTICKS_PER_SEC < 10000 || OSTICKS_PER_SEC > 64516
#error Illegal OSTICKS_PER_SEC - must be in range [10000:64516]. One tick must be 15.5us .. 100us long.
#endif
typedef s4_t ostime_t;
#if !HAS_ostick_conv
#define us2osticks(us) ((ostime_t)( ((int64_t)(us) * OSTICKS_PER_SEC) / 1000000))
#define ms2osticks(ms) ((ostime_t)( ((int64_t)(ms) * OSTICKS_PER_SEC) / 1000))
#define sec2osticks(sec) ((ostime_t)( (int64_t)(sec) * OSTICKS_PER_SEC))
#define osticks2ms(os) ((s4_t)(((os)*(int64_t)1000 ) / OSTICKS_PER_SEC))
#define osticks2us(os) ((s4_t)(((os)*(int64_t)1000000 ) / OSTICKS_PER_SEC))
// Special versions
#define us2osticksCeil(us) ((ostime_t)( ((int64_t)(us) * OSTICKS_PER_SEC + 999999) / 1000000))
#define us2osticksRound(us) ((ostime_t)( ((int64_t)(us) * OSTICKS_PER_SEC + 500000) / 1000000))
#define ms2osticksCeil(ms) ((ostime_t)( ((int64_t)(ms) * OSTICKS_PER_SEC + 999) / 1000))
#define ms2osticksRound(ms) ((ostime_t)( ((int64_t)(ms) * OSTICKS_PER_SEC + 500) / 1000))
#endif
struct osjob_t; // fwd decl.
typedef void (*osjobcb_t) (struct osjob_t*);
struct osjob_t {
struct osjob_t* next;
ostime_t deadline;
osjobcb_t func;
};
TYPEDEF_xref2osjob_t;
#ifndef HAS_os_calls
#ifndef os_getDevKey
void os_getDevKey (xref2u1_t buf);
#endif
#ifndef os_getArtEui
void os_getArtEui (xref2u1_t buf);
#endif
#ifndef os_getDevEui
void os_getDevEui (xref2u1_t buf);
#endif
#ifndef os_setCallback
void os_setCallback (xref2osjob_t job, osjobcb_t cb);
#endif
#ifndef os_setTimedCallback
void os_setTimedCallback (xref2osjob_t job, ostime_t time, osjobcb_t cb);
#endif
#ifndef os_clearCallback
void os_clearCallback (xref2osjob_t job);
#endif
#ifndef os_getTime
ostime_t os_getTime (void);
#endif
#ifndef os_getTimeSecs
uint os_getTimeSecs (void);
#endif
#ifndef os_radio
void os_radio (u1_t mode);
#endif
#ifndef os_getBattLevel
u1_t os_getBattLevel (void);
#endif
#ifndef os_rlsbf4
//! Read 32-bit quantity from given pointer in little endian byte order.
u4_t os_rlsbf4 (xref2cu1_t buf);
#endif
#ifndef os_wlsbf4
//! Write 32-bit quntity into buffer in little endian byte order.
void os_wlsbf4 (xref2u1_t buf, u4_t value);
#endif
#ifndef os_rmsbf4
//! Read 32-bit quantity from given pointer in big endian byte order.
u4_t os_rmsbf4 (xref2cu1_t buf);
#endif
#ifndef os_wmsbf4
//! Write 32-bit quntity into buffer in big endian byte order.
void os_wmsbf4 (xref2u1_t buf, u4_t value);
#endif
#ifndef os_rlsbf2
//! Read 16-bit quantity from given pointer in little endian byte order.
u2_t os_rlsbf2 (xref2cu1_t buf);
#endif
#ifndef os_wlsbf2
//! Write 16-bit quntity into buffer in little endian byte order.
void os_wlsbf2 (xref2u1_t buf, u2_t value);
#endif
//! Get random number (default impl for u2_t).
#ifndef os_getRndU2
#define os_getRndU2() ((u2_t)((os_getRndU1()<<8)|os_getRndU1()))
#endif
#ifndef os_crc16
u2_t os_crc16 (xref2u1_t d, uint len);
#endif
#endif // !HAS_os_calls
// ======================================================================
// Table support
// These macros for defining a table of constants and retrieving values
// from it makes it easier for other platforms (like AVR) to optimize
// table accesses.
// Use CONST_TABLE() whenever declaring or defining a table, and
// TABLE_GET_xx whenever accessing its values. The actual name of the
// declared variable will be modified to prevent accidental direct
// access. The accessor macros forward to an inline function to allow
// proper type checking of the array element type.
// Helper to add a prefix to the table name
#define RESOLVE_TABLE(table) constant_table_ ## table
// Accessors for table elements
#define TABLE_GET_U1(table, index) table_get_u1(RESOLVE_TABLE(table), index)
#define TABLE_GET_S1(table, index) table_get_s1(RESOLVE_TABLE(table), index)
#define TABLE_GET_U2(table, index) table_get_u2(RESOLVE_TABLE(table), index)
#define TABLE_GET_S2(table, index) table_get_s2(RESOLVE_TABLE(table), index)
#define TABLE_GET_U4(table, index) table_get_u4(RESOLVE_TABLE(table), index)
#define TABLE_GET_S4(table, index) table_get_s4(RESOLVE_TABLE(table), index)
#define TABLE_GET_OSTIME(table, index) table_get_ostime(RESOLVE_TABLE(table), index)
#define TABLE_GET_U1_TWODIM(table, index1, index2) table_get_u1(RESOLVE_TABLE(table)[index1], index2)
#if defined(__AVR__)
#include <avr/pgmspace.h>
// Macro to define the getter functions. This loads data from
// progmem using pgm_read_xx, or accesses memory directly when the
// index is a constant so gcc can optimize it away;
#define TABLE_GETTER(postfix, type, pgm_type) \
inline type table_get ## postfix(const type *table, size_t index) { \
if (__builtin_constant_p(table[index])) \
return table[index]; \
return pgm_read_ ## pgm_type(&table[index]); \
}
TABLE_GETTER(_u1, u1_t, byte);
TABLE_GETTER(_s1, s1_t, byte);
TABLE_GETTER(_u2, u2_t, word);
TABLE_GETTER(_s2, s2_t, word);
TABLE_GETTER(_u4, u4_t, dword);
TABLE_GETTER(_s4, s4_t, dword);
// This assumes ostime_t is 4 bytes, so error out if it is not
typedef int check_sizeof_ostime_t[(sizeof(ostime_t) == 4) ? 0 : -1];
TABLE_GETTER(_ostime, ostime_t, dword);
// For AVR, store constants in PROGMEM, saving on RAM usage
#define CONST_TABLE(type, name) const type PROGMEM RESOLVE_TABLE(name)
#define lmic_printf(fmt, ...) printf_P(PSTR(fmt), ## __VA_ARGS__)
#else
inline u1_t table_get_u1(const u1_t *table, size_t index) { return table[index]; }
inline s1_t table_get_s1(const s1_t *table, size_t index) { return table[index]; }
inline u2_t table_get_u2(const u2_t *table, size_t index) { return table[index]; }
inline s2_t table_get_s2(const s2_t *table, size_t index) { return table[index]; }
inline u4_t table_get_u4(const u4_t *table, size_t index) { return table[index]; }
inline s4_t table_get_s4(const s4_t *table, size_t index) { return table[index]; }
inline ostime_t table_get_ostime(const ostime_t *table, size_t index) { return table[index]; }
// Declare a table
#define CONST_TABLE(type, name) const type RESOLVE_TABLE(name)
#define lmic_printf printf
#endif
// ======================================================================
// AES support
// !!Keep in sync with lorabase.hpp!!
#ifndef AES_ENC // if AES_ENC is defined as macro all other values must be too
#define AES_ENC 0x00
#define AES_DEC 0x01
#define AES_MIC 0x02
#define AES_CTR 0x04
#define AES_MICNOAUX 0x08
#endif
#ifndef AESkey // if AESkey is defined as macro all other values must be too
extern xref2u1_t AESkey;
extern xref2u1_t AESaux;
#endif
#ifndef os_aes
u4_t os_aes (u1_t mode, xref2u1_t buf, u2_t len);
#endif
#ifdef __cplusplus
} // extern "C"
#endif
#endif // _oslmic_h_

@ -1,851 +0,0 @@
/*******************************************************************************
* Copyright (c) 2014-2015 IBM Corporation.
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Eclipse Public License v1.0
* which accompanies this distribution, and is available at
* http://www.eclipse.org/legal/epl-v10.html
*
* Contributors:
* IBM Zurich Research Lab - initial API, implementation and documentation
*******************************************************************************/
#include "lmic.h"
// ----------------------------------------
// Registers Mapping
#define RegFifo 0x00 // common
#define RegOpMode 0x01 // common
#define FSKRegBitrateMsb 0x02
#define FSKRegBitrateLsb 0x03
#define FSKRegFdevMsb 0x04
#define FSKRegFdevLsb 0x05
#define RegFrfMsb 0x06 // common
#define RegFrfMid 0x07 // common
#define RegFrfLsb 0x08 // common
#define RegPaConfig 0x09 // common
#define RegPaRamp 0x0A // common
#define RegOcp 0x0B // common
#define RegLna 0x0C // common
#define FSKRegRxConfig 0x0D
#define LORARegFifoAddrPtr 0x0D
#define FSKRegRssiConfig 0x0E
#define LORARegFifoTxBaseAddr 0x0E
#define FSKRegRssiCollision 0x0F
#define LORARegFifoRxBaseAddr 0x0F
#define FSKRegRssiThresh 0x10
#define LORARegFifoRxCurrentAddr 0x10
#define FSKRegRssiValue 0x11
#define LORARegIrqFlagsMask 0x11
#define FSKRegRxBw 0x12
#define LORARegIrqFlags 0x12
#define FSKRegAfcBw 0x13
#define LORARegRxNbBytes 0x13
#define FSKRegOokPeak 0x14
#define LORARegRxHeaderCntValueMsb 0x14
#define FSKRegOokFix 0x15
#define LORARegRxHeaderCntValueLsb 0x15
#define FSKRegOokAvg 0x16
#define LORARegRxPacketCntValueMsb 0x16
#define LORARegRxpacketCntValueLsb 0x17
#define LORARegModemStat 0x18
#define LORARegPktSnrValue 0x19
#define FSKRegAfcFei 0x1A
#define LORARegPktRssiValue 0x1A
#define FSKRegAfcMsb 0x1B
#define LORARegRssiValue 0x1B
#define FSKRegAfcLsb 0x1C
#define LORARegHopChannel 0x1C
#define FSKRegFeiMsb 0x1D
#define LORARegModemConfig1 0x1D
#define FSKRegFeiLsb 0x1E
#define LORARegModemConfig2 0x1E
#define FSKRegPreambleDetect 0x1F
#define LORARegSymbTimeoutLsb 0x1F
#define FSKRegRxTimeout1 0x20
#define LORARegPreambleMsb 0x20
#define FSKRegRxTimeout2 0x21
#define LORARegPreambleLsb 0x21
#define FSKRegRxTimeout3 0x22
#define LORARegPayloadLength 0x22
#define FSKRegRxDelay 0x23
#define LORARegPayloadMaxLength 0x23
#define FSKRegOsc 0x24
#define LORARegHopPeriod 0x24
#define FSKRegPreambleMsb 0x25
#define LORARegFifoRxByteAddr 0x25
#define LORARegModemConfig3 0x26
#define FSKRegPreambleLsb 0x26
#define FSKRegSyncConfig 0x27
#define LORARegFeiMsb 0x28
#define FSKRegSyncValue1 0x28
#define LORAFeiMib 0x29
#define FSKRegSyncValue2 0x29
#define LORARegFeiLsb 0x2A
#define FSKRegSyncValue3 0x2A
#define FSKRegSyncValue4 0x2B
#define LORARegRssiWideband 0x2C
#define FSKRegSyncValue5 0x2C
#define FSKRegSyncValue6 0x2D
#define FSKRegSyncValue7 0x2E
#define FSKRegSyncValue8 0x2F
#define FSKRegPacketConfig1 0x30
#define FSKRegPacketConfig2 0x31
#define LORARegDetectOptimize 0x31
#define FSKRegPayloadLength 0x32
#define FSKRegNodeAdrs 0x33
#define LORARegInvertIQ 0x33
#define FSKRegBroadcastAdrs 0x34
#define FSKRegFifoThresh 0x35
#define FSKRegSeqConfig1 0x36
#define FSKRegSeqConfig2 0x37
#define LORARegDetectionThreshold 0x37
#define FSKRegTimerResol 0x38
#define FSKRegTimer1Coef 0x39
#define LORARegSyncWord 0x39
#define FSKRegTimer2Coef 0x3A
#define FSKRegImageCal 0x3B
#define FSKRegTemp 0x3C
#define FSKRegLowBat 0x3D
#define FSKRegIrqFlags1 0x3E
#define FSKRegIrqFlags2 0x3F
#define RegDioMapping1 0x40 // common
#define RegDioMapping2 0x41 // common
#define RegVersion 0x42 // common
// #define RegAgcRef 0x43 // common
// #define RegAgcThresh1 0x44 // common
// #define RegAgcThresh2 0x45 // common
// #define RegAgcThresh3 0x46 // common
// #define RegPllHop 0x4B // common
// #define RegTcxo 0x58 // common
#define RegPaDac 0x5A // common
// #define RegPll 0x5C // common
// #define RegPllLowPn 0x5E // common
// #define RegFormerTemp 0x6C // common
// #define RegBitRateFrac 0x70 // common
// ----------------------------------------
// spread factors and mode for RegModemConfig2
#define SX1272_MC2_FSK 0x00
#define SX1272_MC2_SF7 0x70
#define SX1272_MC2_SF8 0x80
#define SX1272_MC2_SF9 0x90
#define SX1272_MC2_SF10 0xA0
#define SX1272_MC2_SF11 0xB0
#define SX1272_MC2_SF12 0xC0
// bandwidth for RegModemConfig1
#define SX1272_MC1_BW_125 0x00
#define SX1272_MC1_BW_250 0x40
#define SX1272_MC1_BW_500 0x80
// coding rate for RegModemConfig1
#define SX1272_MC1_CR_4_5 0x08
#define SX1272_MC1_CR_4_6 0x10
#define SX1272_MC1_CR_4_7 0x18
#define SX1272_MC1_CR_4_8 0x20
#define SX1272_MC1_IMPLICIT_HEADER_MODE_ON 0x04 // required for receive
#define SX1272_MC1_RX_PAYLOAD_CRCON 0x02
#define SX1272_MC1_LOW_DATA_RATE_OPTIMIZE 0x01 // mandated for SF11 and SF12
// transmit power configuration for RegPaConfig
#define SX1272_PAC_PA_SELECT_PA_BOOST 0x80
#define SX1272_PAC_PA_SELECT_RFIO_PIN 0x00
// sx1276 RegModemConfig1
#define SX1276_MC1_BW_125 0x70
#define SX1276_MC1_BW_250 0x80
#define SX1276_MC1_BW_500 0x90
#define SX1276_MC1_CR_4_5 0x02
#define SX1276_MC1_CR_4_6 0x04
#define SX1276_MC1_CR_4_7 0x06
#define SX1276_MC1_CR_4_8 0x08
#define SX1276_MC1_IMPLICIT_HEADER_MODE_ON 0x01
// sx1276 RegModemConfig2
#define SX1276_MC2_RX_PAYLOAD_CRCON 0x04
// sx1276 RegModemConfig3
#define SX1276_MC3_LOW_DATA_RATE_OPTIMIZE 0x08
#define SX1276_MC3_AGCAUTO 0x04
// preamble for lora networks (nibbles swapped)
#define LORA_MAC_PREAMBLE 0x34
#define RXLORA_RXMODE_RSSI_REG_MODEM_CONFIG1 0x0A
#ifdef CFG_sx1276_radio
#define RXLORA_RXMODE_RSSI_REG_MODEM_CONFIG2 0x70
#elif CFG_sx1272_radio
#define RXLORA_RXMODE_RSSI_REG_MODEM_CONFIG2 0x74
#endif
// ----------------------------------------
// Constants for radio registers
#define OPMODE_LORA 0x80
#define OPMODE_MASK 0x07
#define OPMODE_SLEEP 0x00
#define OPMODE_STANDBY 0x01
#define OPMODE_FSTX 0x02
#define OPMODE_TX 0x03
#define OPMODE_FSRX 0x04
#define OPMODE_RX 0x05
#define OPMODE_RX_SINGLE 0x06
#define OPMODE_CAD 0x07
// ----------------------------------------
// Bits masking the corresponding IRQs from the radio
#define IRQ_LORA_RXTOUT_MASK 0x80
#define IRQ_LORA_RXDONE_MASK 0x40
#define IRQ_LORA_CRCERR_MASK 0x20
#define IRQ_LORA_HEADER_MASK 0x10
#define IRQ_LORA_TXDONE_MASK 0x08
#define IRQ_LORA_CDDONE_MASK 0x04
#define IRQ_LORA_FHSSCH_MASK 0x02
#define IRQ_LORA_CDDETD_MASK 0x01
#define IRQ_FSK1_MODEREADY_MASK 0x80
#define IRQ_FSK1_RXREADY_MASK 0x40
#define IRQ_FSK1_TXREADY_MASK 0x20
#define IRQ_FSK1_PLLLOCK_MASK 0x10
#define IRQ_FSK1_RSSI_MASK 0x08
#define IRQ_FSK1_TIMEOUT_MASK 0x04
#define IRQ_FSK1_PREAMBLEDETECT_MASK 0x02
#define IRQ_FSK1_SYNCADDRESSMATCH_MASK 0x01
#define IRQ_FSK2_FIFOFULL_MASK 0x80
#define IRQ_FSK2_FIFOEMPTY_MASK 0x40
#define IRQ_FSK2_FIFOLEVEL_MASK 0x20
#define IRQ_FSK2_FIFOOVERRUN_MASK 0x10
#define IRQ_FSK2_PACKETSENT_MASK 0x08
#define IRQ_FSK2_PAYLOADREADY_MASK 0x04
#define IRQ_FSK2_CRCOK_MASK 0x02
#define IRQ_FSK2_LOWBAT_MASK 0x01
// ----------------------------------------
// DIO function mappings D0D1D2D3
#define MAP_DIO0_LORA_RXDONE 0x00 // 00------
#define MAP_DIO0_LORA_TXDONE 0x40 // 01------
#define MAP_DIO1_LORA_RXTOUT 0x00 // --00----
#define MAP_DIO1_LORA_NOP 0x30 // --11----
#define MAP_DIO2_LORA_NOP 0xC0 // ----11--
#define MAP_DIO0_FSK_READY 0x00 // 00------ (packet sent / payload ready)
#define MAP_DIO1_FSK_NOP 0x30 // --11----
#define MAP_DIO2_FSK_TXNOP 0x04 // ----01--
#define MAP_DIO2_FSK_TIMEOUT 0x08 // ----10--
// FSK IMAGECAL defines
#define RF_IMAGECAL_AUTOIMAGECAL_MASK 0x7F
#define RF_IMAGECAL_AUTOIMAGECAL_ON 0x80
#define RF_IMAGECAL_AUTOIMAGECAL_OFF 0x00 // Default
#define RF_IMAGECAL_IMAGECAL_MASK 0xBF
#define RF_IMAGECAL_IMAGECAL_START 0x40
#define RF_IMAGECAL_IMAGECAL_RUNNING 0x20
#define RF_IMAGECAL_IMAGECAL_DONE 0x00 // Default
// RADIO STATE
// (initialized by radio_init(), used by radio_rand1())
static u1_t randbuf[16];
#ifdef CFG_sx1276_radio
#define LNA_RX_GAIN (0x20|0x1)
#elif CFG_sx1272_radio
#define LNA_RX_GAIN (0x20|0x03)
#else
#error Missing CFG_sx1272_radio/CFG_sx1276_radio
#endif
static void writeReg (u1_t addr, u1_t data ) {
hal_pin_nss(0);
hal_spi(addr | 0x80);
hal_spi(data);
hal_pin_nss(1);
}
static u1_t readReg (u1_t addr) {
hal_pin_nss(0);
hal_spi(addr & 0x7F);
u1_t val = hal_spi(0x00);
hal_pin_nss(1);
return val;
}
static void writeBuf (u1_t addr, xref2u1_t buf, u1_t len) {
hal_pin_nss(0);
hal_spi(addr | 0x80);
for (u1_t i=0; i<len; i++) {
hal_spi(buf[i]);
}
hal_pin_nss(1);
}
static void readBuf (u1_t addr, xref2u1_t buf, u1_t len) {
hal_pin_nss(0);
hal_spi(addr & 0x7F);
for (u1_t i=0; i<len; i++) {
buf[i] = hal_spi(0x00);
}
hal_pin_nss(1);
}
static void opmode (u1_t mode) {
writeReg(RegOpMode, (readReg(RegOpMode) & ~OPMODE_MASK) | mode);
}
static void opmodeLora() {
u1_t u = OPMODE_LORA;
#ifdef CFG_sx1276_radio
u |= 0x8; // TBD: sx1276 high freq
#endif
writeReg(RegOpMode, u);
}
static void opmodeFSK() {
u1_t u = 0;
#ifdef CFG_sx1276_radio
u |= 0x8; // TBD: sx1276 high freq
#endif
writeReg(RegOpMode, u);
}
// configure LoRa modem (cfg1, cfg2)
static void configLoraModem () {
sf_t sf = getSf(LMIC.rps);
#ifdef CFG_sx1276_radio
u1_t mc1 = 0, mc2 = 0, mc3 = 0;
switch (getBw(LMIC.rps)) {
case BW125: mc1 |= SX1276_MC1_BW_125; break;
case BW250: mc1 |= SX1276_MC1_BW_250; break;
case BW500: mc1 |= SX1276_MC1_BW_500; break;
default:
ASSERT(0);
}
switch( getCr(LMIC.rps) ) {
case CR_4_5: mc1 |= SX1276_MC1_CR_4_5; break;
case CR_4_6: mc1 |= SX1276_MC1_CR_4_6; break;
case CR_4_7: mc1 |= SX1276_MC1_CR_4_7; break;
case CR_4_8: mc1 |= SX1276_MC1_CR_4_8; break;
default:
ASSERT(0);
}
if (getIh(LMIC.rps)) {
mc1 |= SX1276_MC1_IMPLICIT_HEADER_MODE_ON;
writeReg(LORARegPayloadLength, getIh(LMIC.rps)); // required length
}
// set ModemConfig1
writeReg(LORARegModemConfig1, mc1);
mc2 = (SX1272_MC2_SF7 + ((sf-1)<<4));
if (getNocrc(LMIC.rps) == 0) {
mc2 |= SX1276_MC2_RX_PAYLOAD_CRCON;
}
writeReg(LORARegModemConfig2, mc2);
mc3 = SX1276_MC3_AGCAUTO;
if ((sf == SF11 || sf == SF12) && getBw(LMIC.rps) == BW125) {
mc3 |= SX1276_MC3_LOW_DATA_RATE_OPTIMIZE;
}
writeReg(LORARegModemConfig3, mc3);
#elif CFG_sx1272_radio
u1_t mc1 = (getBw(LMIC.rps)<<6);
switch( getCr(LMIC.rps) ) {
case CR_4_5: mc1 |= SX1272_MC1_CR_4_5; break;
case CR_4_6: mc1 |= SX1272_MC1_CR_4_6; break;
case CR_4_7: mc1 |= SX1272_MC1_CR_4_7; break;
case CR_4_8: mc1 |= SX1272_MC1_CR_4_8; break;
}
if ((sf == SF11 || sf == SF12) && getBw(LMIC.rps) == BW125) {
mc1 |= SX1272_MC1_LOW_DATA_RATE_OPTIMIZE;
}
if (getNocrc(LMIC.rps) == 0) {
mc1 |= SX1272_MC1_RX_PAYLOAD_CRCON;
}
if (getIh(LMIC.rps)) {
mc1 |= SX1272_MC1_IMPLICIT_HEADER_MODE_ON;
writeReg(LORARegPayloadLength, getIh(LMIC.rps)); // required length
}
// set ModemConfig1
writeReg(LORARegModemConfig1, mc1);
// set ModemConfig2 (sf, AgcAutoOn=1 SymbTimeoutHi=00)
writeReg(LORARegModemConfig2, (SX1272_MC2_SF7 + ((sf-1)<<4)) | 0x04);
#else
#error Missing CFG_sx1272_radio/CFG_sx1276_radio
#endif /* CFG_sx1272_radio */
}
static void configChannel () {
// set frequency: FQ = (FRF * 32 Mhz) / (2 ^ 19)
uint64_t frf = ((uint64_t)LMIC.freq << 19) / 32000000;
writeReg(RegFrfMsb, (u1_t)(frf>>16));
writeReg(RegFrfMid, (u1_t)(frf>> 8));
writeReg(RegFrfLsb, (u1_t)(frf>> 0));
}
static void configPower () {
#ifdef CFG_sx1276_radio
// no boost used for now
s1_t pw = (s1_t)LMIC.txpow;
if(pw >= 17) {
pw = 15;
} else if(pw < 2) {
pw = 2;
}
// check board type for BOOST pin
writeReg(RegPaConfig, (u1_t)(0x80|(pw&0xf)));
writeReg(RegPaDac, readReg(RegPaDac)|0x4);
#elif CFG_sx1272_radio
// set PA config (2-17 dBm using PA_BOOST)
s1_t pw = (s1_t)LMIC.txpow;
if(pw > 17) {
pw = 17;
} else if(pw < 2) {
pw = 2;
}
writeReg(RegPaConfig, (u1_t)(0x80|(pw-2)));
#else
#error Missing CFG_sx1272_radio/CFG_sx1276_radio
#endif /* CFG_sx1272_radio */
}
static void txfsk () {
// select FSK modem (from sleep mode)
writeReg(RegOpMode, 0x10); // FSK, BT=0.5
ASSERT(readReg(RegOpMode) == 0x10);
// enter standby mode (required for FIFO loading))
opmode(OPMODE_STANDBY);
// set bitrate
writeReg(FSKRegBitrateMsb, 0x02); // 50kbps
writeReg(FSKRegBitrateLsb, 0x80);
// set frequency deviation
writeReg(FSKRegFdevMsb, 0x01); // +/- 25kHz
writeReg(FSKRegFdevLsb, 0x99);
// frame and packet handler settings
writeReg(FSKRegPreambleMsb, 0x00);
writeReg(FSKRegPreambleLsb, 0x05);
writeReg(FSKRegSyncConfig, 0x12);
writeReg(FSKRegPacketConfig1, 0xD0);
writeReg(FSKRegPacketConfig2, 0x40);
writeReg(FSKRegSyncValue1, 0xC1);
writeReg(FSKRegSyncValue2, 0x94);
writeReg(FSKRegSyncValue3, 0xC1);
// configure frequency
configChannel();
// configure output power
configPower();
// set the IRQ mapping DIO0=PacketSent DIO1=NOP DIO2=NOP
writeReg(RegDioMapping1, MAP_DIO0_FSK_READY|MAP_DIO1_FSK_NOP|MAP_DIO2_FSK_TXNOP);
// initialize the payload size and address pointers
writeReg(FSKRegPayloadLength, LMIC.dataLen+1); // (insert length byte into payload))
// download length byte and buffer to the radio FIFO
writeReg(RegFifo, LMIC.dataLen);
writeBuf(RegFifo, LMIC.frame, LMIC.dataLen);
// enable antenna switch for TX
hal_pin_rxtx(1);
// now we actually start the transmission
opmode(OPMODE_TX);
}
static void txlora () {
// select LoRa modem (from sleep mode)
//writeReg(RegOpMode, OPMODE_LORA);
opmodeLora();
ASSERT((readReg(RegOpMode) & OPMODE_LORA) != 0);
// enter standby mode (required for FIFO loading))
opmode(OPMODE_STANDBY);
// configure LoRa modem (cfg1, cfg2)
configLoraModem();
// configure frequency
configChannel();
// configure output power
writeReg(RegPaRamp, (readReg(RegPaRamp) & 0xF0) | 0x08); // set PA ramp-up time 50 uSec
configPower();
// set sync word
writeReg(LORARegSyncWord, LORA_MAC_PREAMBLE);
// set the IRQ mapping DIO0=TxDone DIO1=NOP DIO2=NOP
writeReg(RegDioMapping1, MAP_DIO0_LORA_TXDONE|MAP_DIO1_LORA_NOP|MAP_DIO2_LORA_NOP);
// clear all radio IRQ flags
writeReg(LORARegIrqFlags, 0xFF);
// mask all IRQs but TxDone
writeReg(LORARegIrqFlagsMask, ~IRQ_LORA_TXDONE_MASK);
// initialize the payload size and address pointers
writeReg(LORARegFifoTxBaseAddr, 0x00);
writeReg(LORARegFifoAddrPtr, 0x00);
writeReg(LORARegPayloadLength, LMIC.dataLen);
// download buffer to the radio FIFO
writeBuf(RegFifo, LMIC.frame, LMIC.dataLen);
// enable antenna switch for TX
hal_pin_rxtx(1);
// now we actually start the transmission
opmode(OPMODE_TX);
#if LMIC_DEBUG_LEVEL > 0
u1_t sf = getSf(LMIC.rps) + 6; // 1 == SF7
u1_t bw = getBw(LMIC.rps);
u1_t cr = getCr(LMIC.rps);
lmic_printf("%lu: TXMODE, freq=%lu, len=%d, SF=%d, BW=%d, CR=4/%d, IH=%d\n",
os_getTime(), LMIC.freq, LMIC.dataLen, sf,
bw == BW125 ? 125 : (bw == BW250 ? 250 : 500),
cr == CR_4_5 ? 5 : (cr == CR_4_6 ? 6 : (cr == CR_4_7 ? 7 : 8)),
getIh(LMIC.rps)
);
#endif
}
// start transmitter (buf=LMIC.frame, len=LMIC.dataLen)
static void starttx () {
ASSERT( (readReg(RegOpMode) & OPMODE_MASK) == OPMODE_SLEEP );
if(getSf(LMIC.rps) == FSK) { // FSK modem
txfsk();
} else { // LoRa modem
txlora();
}
// the radio will go back to STANDBY mode as soon as the TX is finished
// the corresponding IRQ will inform us about completion.
}
enum { RXMODE_SINGLE, RXMODE_SCAN, RXMODE_RSSI };
static CONST_TABLE(u1_t, rxlorairqmask)[] = {
[RXMODE_SINGLE] = IRQ_LORA_RXDONE_MASK|IRQ_LORA_RXTOUT_MASK,
[RXMODE_SCAN] = IRQ_LORA_RXDONE_MASK,
[RXMODE_RSSI] = 0x00,
};
// start LoRa receiver (time=LMIC.rxtime, timeout=LMIC.rxsyms, result=LMIC.frame[LMIC.dataLen])
static void rxlora (u1_t rxmode) {
// select LoRa modem (from sleep mode)
opmodeLora();
ASSERT((readReg(RegOpMode) & OPMODE_LORA) != 0);
// enter standby mode (warm up))
opmode(OPMODE_STANDBY);
// don't use MAC settings at startup
if(rxmode == RXMODE_RSSI) { // use fixed settings for rssi scan
writeReg(LORARegModemConfig1, RXLORA_RXMODE_RSSI_REG_MODEM_CONFIG1);
writeReg(LORARegModemConfig2, RXLORA_RXMODE_RSSI_REG_MODEM_CONFIG2);
} else { // single or continuous rx mode
// configure LoRa modem (cfg1, cfg2)
configLoraModem();
// configure frequency
configChannel();
}
// set LNA gain
writeReg(RegLna, LNA_RX_GAIN);
// set max payload size
writeReg(LORARegPayloadMaxLength, 64);
#if !defined(DISABLE_INVERT_IQ_ON_RX)
// use inverted I/Q signal (prevent mote-to-mote communication)
writeReg(LORARegInvertIQ, readReg(LORARegInvertIQ)|(1<<6));
#endif
// set symbol timeout (for single rx)
writeReg(LORARegSymbTimeoutLsb, LMIC.rxsyms);
// set sync word
writeReg(LORARegSyncWord, LORA_MAC_PREAMBLE);
// configure DIO mapping DIO0=RxDone DIO1=RxTout DIO2=NOP
writeReg(RegDioMapping1, MAP_DIO0_LORA_RXDONE|MAP_DIO1_LORA_RXTOUT|MAP_DIO2_LORA_NOP);
// clear all radio IRQ flags
writeReg(LORARegIrqFlags, 0xFF);
// enable required radio IRQs
writeReg(LORARegIrqFlagsMask, ~TABLE_GET_U1(rxlorairqmask, rxmode));
// enable antenna switch for RX
hal_pin_rxtx(0);
// now instruct the radio to receive
if (rxmode == RXMODE_SINGLE) { // single rx
hal_waitUntil(LMIC.rxtime); // busy wait until exact rx time
opmode(OPMODE_RX_SINGLE);
} else { // continous rx (scan or rssi)
opmode(OPMODE_RX);
}
#if LMIC_DEBUG_LEVEL > 0
if (rxmode == RXMODE_RSSI) {
lmic_printf("RXMODE_RSSI\n");
} else {
u1_t sf = getSf(LMIC.rps) + 6; // 1 == SF7
u1_t bw = getBw(LMIC.rps);
u1_t cr = getCr(LMIC.rps);
lmic_printf("%lu: %s, freq=%lu, SF=%d, BW=%d, CR=4/%d, IH=%d\n",
os_getTime(),
rxmode == RXMODE_SINGLE ? "RXMODE_SINGLE" : (rxmode == RXMODE_SCAN ? "RXMODE_SCAN" : "UNKNOWN_RX"),
LMIC.freq, sf,
bw == BW125 ? 125 : (bw == BW250 ? 250 : 500),
cr == CR_4_5 ? 5 : (cr == CR_4_6 ? 6 : (cr == CR_4_7 ? 7 : 8)),
getIh(LMIC.rps)
);
}
#endif
}
static void rxfsk (u1_t rxmode) {
// only single rx (no continuous scanning, no noise sampling)
ASSERT( rxmode == RXMODE_SINGLE );
// select FSK modem (from sleep mode)
//writeReg(RegOpMode, 0x00); // (not LoRa)
opmodeFSK();
ASSERT((readReg(RegOpMode) & OPMODE_LORA) == 0);
// enter standby mode (warm up))
opmode(OPMODE_STANDBY);
// configure frequency
configChannel();
// set LNA gain
//writeReg(RegLna, 0x20|0x03); // max gain, boost enable
writeReg(RegLna, LNA_RX_GAIN);
// configure receiver
writeReg(FSKRegRxConfig, 0x1E); // AFC auto, AGC, trigger on preamble?!?
// set receiver bandwidth
writeReg(FSKRegRxBw, 0x0B); // 50kHz SSb
// set AFC bandwidth
writeReg(FSKRegAfcBw, 0x12); // 83.3kHz SSB
// set preamble detection
writeReg(FSKRegPreambleDetect, 0xAA); // enable, 2 bytes, 10 chip errors
// set sync config
writeReg(FSKRegSyncConfig, 0x12); // no auto restart, preamble 0xAA, enable, fill FIFO, 3 bytes sync
// set packet config
writeReg(FSKRegPacketConfig1, 0xD8); // var-length, whitening, crc, no auto-clear, no adr filter
writeReg(FSKRegPacketConfig2, 0x40); // packet mode
// set sync value
writeReg(FSKRegSyncValue1, 0xC1);
writeReg(FSKRegSyncValue2, 0x94);
writeReg(FSKRegSyncValue3, 0xC1);
// set preamble timeout
writeReg(FSKRegRxTimeout2, 0xFF);//(LMIC.rxsyms+1)/2);
// set bitrate
writeReg(FSKRegBitrateMsb, 0x02); // 50kbps
writeReg(FSKRegBitrateLsb, 0x80);
// set frequency deviation
writeReg(FSKRegFdevMsb, 0x01); // +/- 25kHz
writeReg(FSKRegFdevLsb, 0x99);
// configure DIO mapping DIO0=PayloadReady DIO1=NOP DIO2=TimeOut
writeReg(RegDioMapping1, MAP_DIO0_FSK_READY|MAP_DIO1_FSK_NOP|MAP_DIO2_FSK_TIMEOUT);
// enable antenna switch for RX
hal_pin_rxtx(0);
// now instruct the radio to receive
hal_waitUntil(LMIC.rxtime); // busy wait until exact rx time
opmode(OPMODE_RX); // no single rx mode available in FSK
}
static void startrx (u1_t rxmode) {
ASSERT( (readReg(RegOpMode) & OPMODE_MASK) == OPMODE_SLEEP );
if(getSf(LMIC.rps) == FSK) { // FSK modem
rxfsk(rxmode);
} else { // LoRa modem
rxlora(rxmode);
}
// the radio will go back to STANDBY mode as soon as the RX is finished
// or timed out, and the corresponding IRQ will inform us about completion.
}
// get random seed from wideband noise rssi
void radio_init () {
hal_disableIRQs();
// manually reset radio
#ifdef CFG_sx1276_radio
hal_pin_rst(0); // drive RST pin low
#else
hal_pin_rst(1); // drive RST pin high
#endif
hal_waitUntil(os_getTime()+ms2osticks(1)); // wait >100us
hal_pin_rst(2); // configure RST pin floating!
hal_waitUntil(os_getTime()+ms2osticks(5)); // wait 5ms
opmode(OPMODE_SLEEP);
// some sanity checks, e.g., read version number
u1_t v = readReg(RegVersion);
#ifdef CFG_sx1276_radio
ASSERT(v == 0x12 );
#elif CFG_sx1272_radio
ASSERT(v == 0x22);
#else
#error Missing CFG_sx1272_radio/CFG_sx1276_radio
#endif
// seed 15-byte randomness via noise rssi
rxlora(RXMODE_RSSI);
while( (readReg(RegOpMode) & OPMODE_MASK) != OPMODE_RX ); // continuous rx
for(int i=1; i<16; i++) {
for(int j=0; j<8; j++) {
u1_t b; // wait for two non-identical subsequent least-significant bits
while( (b = readReg(LORARegRssiWideband) & 0x01) == (readReg(LORARegRssiWideband) & 0x01) );
randbuf[i] = (randbuf[i] << 1) | b;
}
}
randbuf[0] = 16; // set initial index
#ifdef CFG_sx1276mb1_board
// chain calibration
writeReg(RegPaConfig, 0);
// Launch Rx chain calibration for LF band
writeReg(FSKRegImageCal, (readReg(FSKRegImageCal) & RF_IMAGECAL_IMAGECAL_MASK)|RF_IMAGECAL_IMAGECAL_START);
while((readReg(FSKRegImageCal)&RF_IMAGECAL_IMAGECAL_RUNNING) == RF_IMAGECAL_IMAGECAL_RUNNING){ ; }
// Sets a Frequency in HF band
u4_t frf = 868000000;
writeReg(RegFrfMsb, (u1_t)(frf>>16));
writeReg(RegFrfMid, (u1_t)(frf>> 8));
writeReg(RegFrfLsb, (u1_t)(frf>> 0));
// Launch Rx chain calibration for HF band
writeReg(FSKRegImageCal, (readReg(FSKRegImageCal) & RF_IMAGECAL_IMAGECAL_MASK)|RF_IMAGECAL_IMAGECAL_START);
while((readReg(FSKRegImageCal) & RF_IMAGECAL_IMAGECAL_RUNNING) == RF_IMAGECAL_IMAGECAL_RUNNING) { ; }
#endif /* CFG_sx1276mb1_board */
opmode(OPMODE_SLEEP);
hal_enableIRQs();
}
// return next random byte derived from seed buffer
// (buf[0] holds index of next byte to be returned)
u1_t radio_rand1 () {
u1_t i = randbuf[0];
ASSERT( i != 0 );
if( i==16 ) {
os_aes(AES_ENC, randbuf, 16); // encrypt seed with any key
i = 0;
}
u1_t v = randbuf[i++];
randbuf[0] = i;
return v;
}
u1_t radio_rssi () {
hal_disableIRQs();
u1_t r = readReg(LORARegRssiValue);
hal_enableIRQs();
return r;
}
static CONST_TABLE(u2_t, LORA_RXDONE_FIXUP)[] = {
[FSK] = us2osticks(0), // ( 0 ticks)
[SF7] = us2osticks(0), // ( 0 ticks)
[SF8] = us2osticks(1648), // ( 54 ticks)
[SF9] = us2osticks(3265), // ( 107 ticks)
[SF10] = us2osticks(7049), // ( 231 ticks)
[SF11] = us2osticks(13641), // ( 447 ticks)
[SF12] = us2osticks(31189), // (1022 ticks)
};
// called by hal ext IRQ handler
// (radio goes to stanby mode after tx/rx operations)
void radio_irq_handler (u1_t dio) {
ostime_t now = os_getTime();
if( (readReg(RegOpMode) & OPMODE_LORA) != 0) { // LORA modem
u1_t flags = readReg(LORARegIrqFlags);
#if LMIC_DEBUG_LEVEL > 1
lmic_printf("%lu: irq: dio: 0x%x flags: 0x%x\n", now, dio, flags);
#endif
if( flags & IRQ_LORA_TXDONE_MASK ) {
// save exact tx time
LMIC.txend = now - us2osticks(43); // TXDONE FIXUP
} else if( flags & IRQ_LORA_RXDONE_MASK ) {
// save exact rx time
if(getBw(LMIC.rps) == BW125) {
now -= TABLE_GET_U2(LORA_RXDONE_FIXUP, getSf(LMIC.rps));
}
LMIC.rxtime = now;
// read the PDU and inform the MAC that we received something
LMIC.dataLen = (readReg(LORARegModemConfig1) & SX1272_MC1_IMPLICIT_HEADER_MODE_ON) ?
readReg(LORARegPayloadLength) : readReg(LORARegRxNbBytes);
// set FIFO read address pointer
writeReg(LORARegFifoAddrPtr, readReg(LORARegFifoRxCurrentAddr));
// now read the FIFO
readBuf(RegFifo, LMIC.frame, LMIC.dataLen);
// read rx quality parameters
LMIC.snr = readReg(LORARegPktSnrValue); // SNR [dB] * 4
LMIC.rssi = readReg(LORARegPktRssiValue) - 125 + 64; // RSSI [dBm] (-196...+63)
} else if( flags & IRQ_LORA_RXTOUT_MASK ) {
// indicate timeout
LMIC.dataLen = 0;
}
// mask all radio IRQs
writeReg(LORARegIrqFlagsMask, 0xFF);
// clear radio IRQ flags
writeReg(LORARegIrqFlags, 0xFF);
} else { // FSK modem
u1_t flags1 = readReg(FSKRegIrqFlags1);
u1_t flags2 = readReg(FSKRegIrqFlags2);
if( flags2 & IRQ_FSK2_PACKETSENT_MASK ) {
// save exact tx time
LMIC.txend = now;
} else if( flags2 & IRQ_FSK2_PAYLOADREADY_MASK ) {
// save exact rx time
LMIC.rxtime = now;
// read the PDU and inform the MAC that we received something
LMIC.dataLen = readReg(FSKRegPayloadLength);
// now read the FIFO
readBuf(RegFifo, LMIC.frame, LMIC.dataLen);
// read rx quality parameters
LMIC.snr = 0; // determine snr
LMIC.rssi = 0; // determine rssi
} else if( flags1 & IRQ_FSK1_TIMEOUT_MASK ) {
// indicate timeout
LMIC.dataLen = 0;
} else {
ASSERT(0);
}
}
// go from stanby to sleep
opmode(OPMODE_SLEEP);
// run os job (use preset func ptr)
os_setCallback(&LMIC.osjob, LMIC.osjob.func);
}
void os_radio (u1_t mode) {
hal_disableIRQs();
switch (mode) {
case RADIO_RST:
// put radio to sleep
opmode(OPMODE_SLEEP);
break;
case RADIO_TX:
// transmit frame now
starttx(); // buf=LMIC.frame, len=LMIC.dataLen
break;
case RADIO_RX:
// receive frame now (exactly at rxtime)
startrx(RXMODE_SINGLE); // buf=LMIC.frame, time=LMIC.rxtime, timeout=LMIC.rxsyms
break;
case RADIO_RXON:
// start scanning for beacon now
startrx(RXMODE_SCAN); // buf=LMIC.frame
break;
}
hal_enableIRQs();
}

@ -1,21 +0,0 @@
The MIT License (MIT)
Copyright (c) 2017 Joscha Feth
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

@ -1,307 +0,0 @@
# LoRaWAN serialization/deserialization library for The Things Network
[![Build Status](https://travis-ci.org/thesolarnomad/lora-serialization.svg?branch=master)](https://travis-ci.org/thesolarnomad/lora-serialization)
[![Coverage Status](https://coveralls.io/repos/github/thesolarnomad/lora-serialization/badge.svg?branch=master)](https://coveralls.io/github/thesolarnomad/lora-serialization?branch=master)
[![semantic-release](https://img.shields.io/badge/%20%20%F0%9F%93%A6%F0%9F%9A%80-semantic--release-e10079.svg)](https://github.com/semantic-release/semantic-release)
This fully unit-tested library allows you to encode your data on the Arduino side and decode it on the [TTN](https://console.thethingsnetwork.org/) side. It provides both a C-based encoder and a JavaScript-based decoder.
Since version 2.2.0 there is also an encoder for the TTN side.
## In short
### Encoding on Arduino, decoding in TTN
Arduino side:
```cpp
#include "LoraMessage.h"
LoraMessage message;
message
.addUnixtime(1467632413)
.addLatLng(-33.905052, 151.26641);
lora_send_bytes(message.getBytes(), message.getLength());
delete message;
```
TTN side:
```javascript
// include src/decoder.js
var json = decode(bytes, [unixtime, latLng], ['time', 'coords']);
// json == {time: unixtime, coords: [latitude, longitude]}
```
### Encoding in TTN
TTN side:
```javascript
// include src/encoder.js
var bytes = encode([timestamp, [latitude, longitude]], [unixtime, latLng]);
// bytes is of type Buffer
```
#### With the convenience class
```javascript
// include src/encoder.js
// include src/LoraMessage.js
var bytes = new LoraMessage(encoder)
.addUnixtime(1467632413)
.addLatLng(-33.905052, 151.26641)
.addBitmap(true, true, false, true)
.getBytes();
// bytes = <Buffer 1d 4b 7a 57 64 a6 fa fd 6a 24 04 09 d0>
```
and then decoding as usual:
```js
var result = decoder.decode(
bytes,
[decoder.unixtime, decoder.latLng, decoder.bitmap],
['time', 'coords', 'heaters']
);
// result =
// { time: 1467632413,
// coords: [ -33.905052, 151.26641 ],
// heaters:
// { a: true,
// b: true,
// c: false,
// d: true,
// e: false,
// f: false,
// g: false,
// h: false } }
```
## General Usage
### Unix time (4 bytes)
Serializes/deserializes a unix time (seconds)
```cpp
#include "LoraEncoder.h"
byte buffer[4];
LoraEncoder encoder(buffer);
encoder.writeUnixtime(1467632413);
// buffer == {0x1d, 0x4b, 0x7a, 0x57}
```
and then in the TTN frontend, use the following method:
```javascript
unixtime(bytes.slice(x, x + 4)) // 1467632413
```
### GPS coordinates (8 bytes)
Serializes/deserializes coordinates (latitude/longitude) with a precision of 6 decimals.
```cpp
#include "LoraEncoder.h"
byte buffer[8];
LoraEncoder encoder(buffer);
encoder.writeLatLng(-33.905052, 151.26641);
// buffer == {0x64, 0xa6, 0xfa, 0xfd, 0x6a, 0x24, 0x04, 0x09}
```
and then in the TTN frontend, use the following method:
```javascript
latLng(bytes.slice(x, x + 8)) // [-33.905052, 151.26641]
```
### Unsigned 8bit Integer (1 byte)
Serializes/deserializes an unsigned 8bit integer.
```cpp
#include "LoraEncoder.h"
byte buffer[1];
LoraEncoder encoder(buffer);
uint8_t i = 10;
encoder.writeUint8(i);
// buffer == {0x0A}
```
and then in the TTN frontend, use the following method:
```javascript
uint8(bytes.slice(x, x + 1)) // 10
```
### Unsigned 16bit Integer (2 bytes)
Serializes/deserializes an unsigned 16bit integer.
```cpp
#include "LoraEncoder.h"
byte buffer[2];
LoraEncoder encoder(buffer);
uint16_t i = 23453;
encoder.writeUint16(i);
// buffer == {0x9d, 0x5b}
```
and then in the TTN frontend, use the following method:
```javascript
uint16(bytes.slice(x, x + 2)) // 23453
```
### Temperature (2 bytes)
Serializes/deserializes a temperature reading between -327.68 and +327.67 (inclusive) with a precision of 2 decimals.
```cpp
#include "LoraEncoder.h"
byte buffer[2];
LoraEncoder encoder(buffer);
encoder.writeTemperature(-123.45);
// buffer == {0xcf, 0xc7}
```
and then in the TTN frontend, use the following method:
```javascript
temperature(bytes.slice(x, x + 2)) // -123.45
```
### Humidity (2 bytes)
Serializes/deserializes a humidity reading between 0 and 100 (inclusive) with a precision of 2 decimals.
```cpp
#include "LoraEncoder.h"
byte buffer[2];
LoraEncoder encoder(buffer);
encoder.writeHumidity(99.99);
// buffer == {0x0f, 0x27}
```
and then in the TTN frontend, use the following method:
```javascript
humidity(bytes.slice(x, x + 2)) // 99.99
```
### Bitmap (1 byte)
Serializes/deserializes a bitmap containing between 0 and 8 different flags.
```cpp
#include "LoraEncoder.h"
byte buffer[1];
LoraEncoder encoder(buffer);
encoder.writeBitmap(true, false, false, false, false, false, false, false);
// buffer == {0x80}
```
and then in the TTN frontend, use the following method:
```javascript
bitmap(bytes.slice(x, x + 1)) // { a: true, b: false, c: false, d: false, e: false, f: false, g: false, h: false }
```
## Composition
### On the Arduino side
The decoder allows you to write more than one value to a byte array:
```cpp
#include "LoraEncoder.h"
byte buffer[19];
LoraEncoder encoder(buffer);
encoder.writeUnixtime(1467632413);
encoder.writeLatLng(-33.905052, 151.26641);
encoder.writeUint8(10);
encoder.writeUint16(23453);
encoder.writeTemperature(80.12);
encoder.writeHumidity(99.99);
encoder.writeBitmap(true, false, false, false, false, false, false, false);
/* buffer == {
0x1d, 0x4b, 0x7a, 0x57, // Unixtime
0x64, 0xa6, 0xfa, 0xfd, 0x6a, 0x24, 0x04, 0x09, // latitude,longitude
0x0A, // Uint8
0x9d, 0x5b, // Uint16
0x1f, 0x4c, // temperature
0x0f, 0x27, // humidity
0x80 // bitmap
}
*/
```
#### Convenience class `LoraMessage`
There is a convenience class that represents a LoraMessage that you can add readings to:
```cpp
#include "LoraMessage.h"
LoraMessage message;
message
.addUnixtime(1467632413)
.addLatLng(-33.905052, 151.26641)
.addUint8(10)
.addUint16(23453)
.addTemperature(80.12)
.addHumidity(99.99)
.addBitmap(false, false, false, false, false, false, true, false);
send(message.getBytes(), message.getLength());
/*
getBytes() == {
0x1d, 0x4b, 0x7a, 0x57, // Unixtime
0x64, 0xa6, 0xfa, 0xfd, 0x6a, 0x24, 0x04, 0x09, // latitude,longitude
0x0A, // Uint8
0x9d, 0x5b, // Uint16
0x1f, 0x4c, // temperature
0x0f, 0x27, // humidity
0xfd // Bitmap
}
and
getLength() == 20
*/
```
### Composition in the TTN decoder frontend with the `decode` method
The `decode` method allows you to specify a mask for the incoming byte buffer (that was generated by this library) and apply decoding functions accordingly.
```javascript
decode(byte Array, mask Array [,mapping Array])
```
#### Example
Paste everything from `src/decoder.js` into the decoder method and use like this:
```javascript
function (bytes) {
// code from src/decoder.js here
return decode(bytes, [latLng, unixtime], ['coords', 'time']);
}
```
This maps the incoming byte buffer of 12 bytes to a sequence of one `latLng` (8 bytes) and one `unixtime` (4 bytes) sequence and maps the first one to a key `coords` and the second to a key `time`.
You can use: `64 A6 FA FD 6A 24 04 09 1D 4B 7A 57` for testing, and it will result in:
```json
{
"coords": [
-33.905052,
151.26641
],
"time": 1467632413
}
```
##### Example decoder in the TTN console
Set up your decoder in the console:
![TTN console decoder example](https://cloud.githubusercontent.com/assets/188038/23703580/c136cc90-0454-11e7-9570-ae137136d7b5.png)
##### Example converter in the TTN console
The decode method already does most of the necessary transformations, so in most cases you can just pass the data through:
![TTN console converter example](https://cloud.githubusercontent.com/assets/188038/23703587/c99021c0-0454-11e7-8670-9f77472a111d.png)
## Development
* Install the dependencies via `yarn`
* Run the unit tests (C) via `yarn run test:c`
* Run the unit tests (JavaScript) via `yarn test`
* Check the coverage (JavaScript) via `yarn coverage` (see `coverage/lcov-report`)
The CI will kick off once you create a pull request automatically.

@ -1,17 +0,0 @@
{
"extends": "../.eslintrc.js",
"rules": {
"no-unused-vars": 0
},
"globals": {
"encode": false,
"decode": false,
"LoraMessage": false,
"unixtime": false,
"latLng": false,
"uint16": false,
"uint8": false,
"temperature": false,
"humidity": false,
}
}

@ -1,15 +0,0 @@
#include <LoraEncoder.h>
byte mydata[12];
void setup() {
LoraEncoder encoder(mydata);
encoder.writeUnixtime(1468075322);
encoder.writeLatLng(-33.905024, 151.26648);
do_send(&sendjob);
}
void loop(void) {
os_runloop_once();
}

@ -1,13 +0,0 @@
#include <LoraMessage.h>
void setup() {
LoraMessage message;
message.addUnixtime(1468075322);
message.addLatLng(-33.905024, 151.26648);
do_send(message.getLength(), message.getBytes());
}
void loop(void) {
os_runloop_once();
}

@ -1,11 +0,0 @@
function ttn_decoder(bytes) {
// bytes is of type Buffer
// IMPORTANT: paste code from src/decoder.js here
return decode(
bytes,
[ unixtime, latLng ],
[ 'timestamp', 'coords' ]
);
}

@ -1,8 +0,0 @@
function ttn_encoder() {
// IMPORTANT: paste code from src/encoder.js here
return encode(
[ Date.now() / 1000, [-33.905052, 151.26641] ],
[ unixtime, latLng ]
);
}

@ -1,8 +0,0 @@
function ttn_encoder() {
// IMPORTANT: paste code from src/encoder.js here
// IMPORTANT: paste code from src/LoraMessage.js here
return new LoraMessage()
.addUnixtime(Date.now() / 1000)
.addLatLng(-33.905052, 151.26641);
}

@ -1,9 +0,0 @@
name=LoRa Serialization
version=3.0.0
author=Joscha Feth <joscha@feth.com>
maintainer=Joscha Feth <joscha@feth.com>
sentence=Library for serialization of data on the Arduino side and deserialization in the TTN
paragraph=
category=Data Processing
url=https://github.com/thesolarnomad/lora-serialization
architectures=*

@ -1,54 +0,0 @@
{
"name": "lora-serialization",
"version": "0.0.0-development",
"description": "LoraWAN serialization/deserialization library for The Things Network",
"main": "src/index.js",
"directories": {
"test": "test"
},
"repository": {
"type": "git",
"url": "https://github.com/thesolarnomad/lora-serialization"
},
"scripts": {
"coverage": "nyc report --reporter=lcov",
"coveralls": "lcov-result-merger 'coverage/*.info' | coveralls",
"lint": "eslint .",
"test": "nyc ava",
"test:watch": "ava --watch",
"test:c": "./.ci/run_c_tests.sh",
"semantic-release": "semantic-release pre && npm publish && semantic-release post"
},
"keywords": [
"lora",
"lorawan",
"ttn",
"thethingsnetwork",
"arduino",
"serialization",
"deserialization",
"cpp"
],
"author": "Joscha Feth <joscha@feth.com>",
"license": "MIT",
"devDependencies": {
"ava": "^0.18.2",
"coveralls": "^2.11.16",
"cz-conventional-changelog": "^2.0.0",
"eslint": "^3.0.1",
"lcov-result-merger": "^1.2.0",
"nyc": "^10.1.2",
"semantic-release": "^6.3.6"
},
"config": {
"commitizen": {
"path": "./node_modules/cz-conventional-changelog"
}
},
"ava": {
"files": [
"test/**/*.js",
"!test/base.js"
]
}
}

@ -1,99 +0,0 @@
/*
LoraEncoder.cpp - Base class for the Lora serialization library
The MIT License (MIT)
Copyright (c) 2016 Joscha Feth
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#if ARDUINO >= 100
#include "Arduino.h"
#endif
#include "LoraEncoder.h"
LoraEncoder::LoraEncoder(byte *buffer) {
_buffer = buffer;
}
void LoraEncoder::_intToBytes(byte *buf, int32_t i, uint8_t byteSize) {
for(uint8_t x = 0; x < byteSize; x++) {
buf[x] = (byte) (i >> (x*8));
}
}
void LoraEncoder::writeUnixtime(uint32_t unixtime) {
_intToBytes(_buffer, unixtime, 4);
_buffer += 4;
}
void LoraEncoder::writeLatLng(double latitude, double longitude) {
int32_t lat = latitude * 1e6;
int32_t lng = longitude * 1e6;
_intToBytes(_buffer, lat, 4);
_intToBytes(_buffer + 4, lng, 4);
_buffer += 8;
}
void LoraEncoder::writeUint16(uint16_t i) {
_intToBytes(_buffer, i, 2);
_buffer += 2;
}
void LoraEncoder::writeUint8(uint8_t i) {
_intToBytes(_buffer, i, 1);
_buffer += 1;
}
void LoraEncoder::writeHumidity(float humidity) {
int16_t h = (int16_t) (humidity * 100);
_intToBytes(_buffer, h, 2);
_buffer += 2;
}
/**
* Uses a 16bit two's complement with two decimals, so the range is
* -327.68 to +327.67 degrees
*/
void LoraEncoder::writeTemperature(float temperature) {
int16_t t = (int16_t) (temperature * 100);
if (temperature < 0) {
t = ~-t;
t = t + 1;
}
_buffer[0] = (byte) ((t >> 8) & 0xFF);
_buffer[1] = (byte) t & 0xFF;
_buffer += 2;
}
void LoraEncoder::writeBitmap(bool a, bool b, bool c, bool d, bool e, bool f, bool g, bool h) {
uint8_t bitmap = 0;
// LSB first
bitmap |= (a & 1) << 7;
bitmap |= (b & 1) << 6;
bitmap |= (c & 1) << 5;
bitmap |= (d & 1) << 4;
bitmap |= (e & 1) << 3;
bitmap |= (f & 1) << 2;
bitmap |= (g & 1) << 1;
bitmap |= (h & 1) << 0;
writeUint8(bitmap);
}

@ -1,52 +0,0 @@
/*
LoraEncoder.h - Main h file for the Lora serialization library
The MIT License (MIT)
Copyright (c) 2016 Joscha Feth
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#ifndef _LORA_ENCODER_H_
#define _LORA_ENCODER_H_
#if ARDUINO >= 100
#include "Arduino.h"
#else
#include <stdint.h>
typedef uint8_t byte;
#endif
class LoraEncoder {
public:
LoraEncoder(byte *buffer);
void writeUnixtime(uint32_t unixtime);
void writeLatLng(double latitude, double longitude);
void writeUint16(uint16_t i);
void writeTemperature(float temperature);
void writeUint8(uint8_t i);
void writeHumidity(float humidity);
void writeBitmap(bool a, bool b, bool c, bool d, bool e, bool f, bool g, bool h);
private:
byte* _buffer;
void _intToBytes(byte *buf, int32_t i, uint8_t byteSize);
};
#endif

@ -1,72 +0,0 @@
#if ARDUINO >= 100
#include "Arduino.h"
#endif
#include <stdlib.h>
#include "LoraMessage.h"
#include "LoraEncoder.h"
LoraMessage::LoraMessage() {
_currentSize = 0;
_buffer = (byte*) malloc(_currentSize);
}
LoraMessage::~LoraMessage() {
free(_buffer);
}
LoraEncoder LoraMessage::_reallocBuffer(int delta) {
void* temp = realloc(_buffer, (_currentSize + delta) * sizeof(byte));
if (temp == NULL) {
free(_buffer);
printf("bad memory allocation!");
while(true);
} else {
_buffer = (byte*) temp;
}
LoraEncoder encoder(_buffer + _currentSize);
_currentSize += delta;
return encoder;
}
LoraMessage& LoraMessage::addUnixtime(uint32_t unixtime) {
_reallocBuffer(4).writeUnixtime(unixtime);
return *this;
}
LoraMessage& LoraMessage::addLatLng(double latitude, double longitude) {
_reallocBuffer(8).writeLatLng(latitude, longitude);
return *this;
}
LoraMessage& LoraMessage::addUint16(uint16_t i) {
_reallocBuffer(2).writeUint16(i);
return *this;
}
LoraMessage& LoraMessage::addTemperature(float temperature) {
_reallocBuffer(2).writeTemperature(temperature);
return *this;
}
LoraMessage& LoraMessage::addUint8(uint8_t i) {
_reallocBuffer(1).writeUint8(i);
return *this;
}
LoraMessage& LoraMessage::addHumidity(float humidity) {
_reallocBuffer(2).writeHumidity(humidity);
return *this;
}
LoraMessage& LoraMessage::addBitmap(bool a, bool b, bool c, bool d, bool e, bool f, bool g, bool h) {
_reallocBuffer(1).writeBitmap(a, b, c, d, e, f, g, h);
return *this;
}
int LoraMessage::getLength() {
return _currentSize;
}
byte* LoraMessage::getBytes() {
return _buffer;
}

@ -1,32 +0,0 @@
#ifndef _LORA_MESSAGE_H_
#define _LORA_MESSAGE_H_
#if ARDUINO >= 100
#include "Arduino.h"
#else
#include <stdint.h>
typedef uint8_t byte;
#endif
#include "LoraEncoder.h"
class LoraMessage {
public:
LoraMessage();
~LoraMessage();
LoraMessage& addUnixtime(uint32_t unixtime);
LoraMessage& addLatLng(double latitude, double longitude);
LoraMessage& addUint16(uint16_t i);
LoraMessage& addTemperature(float temperature);
LoraMessage& addUint8(uint8_t i);
LoraMessage& addHumidity(float humidity);
LoraMessage& addBitmap(bool a, bool b, bool c, bool d, bool e, bool f, bool g, bool h);
byte* getBytes();
int getLength();
private:
LoraEncoder _reallocBuffer(int delta);
byte* _buffer;
int _currentSize;
};
#endif

@ -1,70 +0,0 @@
(function(root) {
function LoraMessage(encoder) {
this.dataTuples = [];
this.encoder = encoder || root;
}
LoraMessage.prototype.addTuple = function(data, fnName) {
this.dataTuples.push({
data: data,
fn: this.encoder[fnName]
});
};
LoraMessage.prototype.addUnixtime = function(unixtime) {
this.addTuple([unixtime], 'unixtime');
return this;
};
LoraMessage.prototype.addLatLng = function(latitude, longitude) {
this.addTuple([latitude, longitude], 'latLng');
return this;
};
LoraMessage.prototype.addUint16 = function(uint16) {
this.addTuple([uint16], 'uint16');
return this;
};
LoraMessage.prototype.addTemperature = function(temperature) {
this.addTuple([temperature], 'temperature');
return this;
};
LoraMessage.prototype.addUint8 = function(uint8) {
this.addTuple([uint8], 'uint8');
return this;
};
LoraMessage.prototype.addHumidity = function(humidity) {
this.addTuple([humidity], 'humidity');
return this;
};
LoraMessage.prototype.addBitmap = function(a, b, c, d, e, f, g, h) {
this.addTuple([a, b, c, d, e, f, g, h], 'bitmap');
return this;
};
LoraMessage.prototype.getBytes = function() {
var buffer = new Buffer(this.getLength());
var offset = 0;
this.dataTuples.forEach(function(tuple) {
var current = tuple.fn.apply(null, tuple.data);
current.copy(buffer, offset);
offset += tuple.fn.BYTES;
});
return buffer;
};
LoraMessage.prototype.getLength = function() {
return this.dataTuples.reduce(function(previous, tuple) {
return previous + tuple.fn.BYTES;
}, 0);
};
if (typeof module === 'object' && typeof module.exports !== 'undefined') {
module.exports = LoraMessage;
}
})(this);

@ -1,127 +0,0 @@
var bytesToInt = function(bytes) {
var i = 0;
for (var x = 0; x < bytes.length; x++) {
i |= +(bytes[x] << (x * 8));
}
return i;
};
var unixtime = function(bytes) {
if (bytes.length !== unixtime.BYTES) {
throw new Error('Unix time must have exactly 4 bytes');
}
return bytesToInt(bytes);
};
unixtime.BYTES = 4;
var uint8 = function(bytes) {
if (bytes.length !== uint8.BYTES) {
throw new Error('int must have exactly 1 byte');
}
return bytesToInt(bytes);
};
uint8.BYTES = 1;
var uint16 = function(bytes) {
if (bytes.length !== uint16.BYTES) {
throw new Error('int must have exactly 2 bytes');
}
return bytesToInt(bytes);
};
uint16.BYTES = 2;
var latLng = function(bytes) {
if (bytes.length !== latLng.BYTES) {
throw new Error('Lat/Long must have exactly 8 bytes');
}
var lat = bytesToInt(bytes.slice(0, latLng.BYTES / 2));
var lng = bytesToInt(bytes.slice(latLng.BYTES / 2, latLng.BYTES));
return [lat / 1e6, lng / 1e6];
};
latLng.BYTES = 8;
var temperature = function(bytes) {
if (bytes.length !== temperature.BYTES) {
throw new Error('Temperature must have exactly 2 bytes');
}
var isNegative = bytes[0] & 0x80;
var b = ('00000000' + Number(bytes[0]).toString(2)).slice(-8)
+ ('00000000' + Number(bytes[1]).toString(2)).slice(-8);
if (isNegative) {
var arr = b.split('').map(function(x) { return !Number(x); });
for (var i = arr.length - 1; i > 0; i--) {
arr[i] = !arr[i];
if (arr[i]) {
break;
}
}
b = arr.map(Number).join('');
}
var t = parseInt(b, 2);
if (isNegative) {
t = -t;
}
return t / 1e2;
};
temperature.BYTES = 2;
var humidity = function(bytes) {
if (bytes.length !== humidity.BYTES) {
throw new Error('Humidity must have exactly 2 bytes');
}
var h = bytesToInt(bytes);
return h / 1e2;
};
humidity.BYTES = 2;
var bitmap = function(byte) {
if (byte.length !== bitmap.BYTES) {
throw new Error('Bitmap must have exactly 1 byte');
}
var i = bytesToInt(byte);
var bm = ('00000000' + Number(i).toString(2)).substr(-8).split('').map(Number).map(Boolean);
return ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']
.reduce(function(obj, pos, index) {
obj[pos] = bm[index];
return obj;
}, {});
};
bitmap.BYTES = 1;
var decode = function(bytes, mask, names) {
var maskLength = mask.reduce(function(prev, cur) {
return prev + cur.BYTES;
}, 0);
if (bytes.length < maskLength) {
throw new Error('Mask length is ' + maskLength + ' whereas input is ' + bytes.length);
}
names = names || [];
var offset = 0;
return mask
.map(function(decodeFn) {
var current = bytes.slice(offset, offset += decodeFn.BYTES);
return decodeFn(current);
})
.reduce(function(prev, cur, idx) {
prev[names[idx] || idx] = cur;
return prev;
}, {});
};
if (typeof module === 'object' && typeof module.exports !== 'undefined') {
module.exports = {
unixtime: unixtime,
uint8: uint8,
uint16: uint16,
temperature: temperature,
humidity: humidity,
latLng: latLng,
bitmap: bitmap,
decode: decode
};
}

@ -1,126 +0,0 @@
var intToBytes = function(i, byteSize) {
var buf = new Buffer(byteSize);
for (var x = 0; x < byteSize; x++) {
buf[x] = i >> (x * 8);
}
return buf;
};
var unixtime = function(i) {
if (isNaN(i) || i < 0) {
throw new Error('Unix time must be positive');
}
return intToBytes(i, unixtime.BYTES);
};
unixtime.BYTES = 4;
var uint8 = function(i) {
if (isNaN(i) || i < 0 || i > 255) {
throw new Error('int be in range 0..255');
}
return intToBytes(i, uint8.BYTES);
};
uint8.BYTES = 1;
var uint16 = function(i) {
if (isNaN(i) || i < 0 || i > 65535) {
throw new Error('int be in range 0..65535');
}
return intToBytes(i, uint16.BYTES);
};
uint16.BYTES = 2;
var latLng = function(latitude, longitude) {
if (isNaN(latitude) || latitude < -90 || latitude > 90) {
throw new Error('Latitude must be between -90° and 90°');
}
if (isNaN(longitude) || longitude < -180 || longitude > 180) {
throw new Error('Longitude must be between -180° and 180°');
}
return Buffer.concat([
intToBytes(~~(latitude * 1e6), latLng.BYTES / 2),
intToBytes(~~(longitude * 1e6), latLng.BYTES / 2)
]);
};
latLng.BYTES = 8;
var temperature = function(i) {
if (isNaN(i) || i < -327.68 || i > 327.67) {
throw new Error('Temperature must be in range -327.68..327.67');
}
var t = ~~(Math.abs(i) * 1e2);
var b = ('0000000000000000' + Number(t >>> 0).toString(2)).slice(-16);
if (i < 0) {
var arr = b.split('').map(function(x) { return !Number(x); });
for (var o = arr.length - 1; o > 0; o--) {
arr[o] = !arr[o];
if (arr[o]) {
break;
}
}
b = arr.map(Number).join('');
}
return new Buffer([
parseInt(b.slice(-16, -8), 2),
parseInt(b.slice(-8), 2)
]);
};
temperature.BYTES = 2;
var humidity = function(i) {
if (isNaN(i) || i < 0 || i > 100) {
throw new Error('Humidity must be in range 0..100');
}
return intToBytes(i * 1e2, humidity.BYTES);
};
humidity.BYTES = 2;
var bitmap = function(a, b, c, d, e, f, g, h) { // eslint-disable-line no-unused-vars
var base = [];
for(var i = 0; i < 8; i++) {
var bit = arguments[i];
if (typeof bit === 'undefined') {
base[i] = false;
} else if (typeof bit !== 'boolean') {
throw new TypeError('Arguments must be of type boolean');
} else {
base[i] = bit;
}
}
var bm = parseInt(base.map(Number).join(''), 2);
return intToBytes(bm, bitmap.BYTES);
};
bitmap.BYTES = 1;
var encode = function(values, mask) {
if (!Array.isArray(values)) {
throw new TypeError('Values must be an array');
}
if (!Array.isArray(mask)) {
throw new TypeError('Mask must be an array');
}
if (values.length > mask.length) {
throw new Error('Mask length is ' + mask.length + ' whereas input is ' + values.length);
}
return Buffer.concat(values
.map(function(args, i) {
return mask[i].apply(null, Array.isArray(args) ? args : [args]);
}));
};
if (typeof module === 'object' && typeof module.exports !== 'undefined') {
module.exports = {
unixtime: unixtime,
uint8: uint8,
uint16: uint16,
temperature: temperature,
humidity: humidity,
latLng: latLng,
bitmap: bitmap,
encode: encode
};
}

@ -1,9 +0,0 @@
var encoder = require('./encoder');
var decoder = require('./decoder');
var LoraMessage = require('./LoraMessage');
module.exports = {
encoder: encoder,
decoder: decoder,
LoraMessage: LoraMessage,
};

File diff suppressed because it is too large Load Diff

@ -1,26 +0,0 @@
# SDS011 library selectable serialport
Arduino library for dust Sensor SDS011 (Nova Fitness Co.,Ltd) which allows to choose the serial port used to communicate with the sensor.
Based on the work of [ricky-z](https://github.com/ricki-z/SDS011)
## Usage
* Define SDS object:
```
SDS011(Stream& serial);
```
i.e. SDS011 mySDS(Serial1);
* Start serial communication:
```
Serial1.begin(9600);
```
* Read values:
```
int read(float *p25, float *p10);
```
i.e. error = mySDS(pm25,pm10);
Reads the PM2.5 and PM10 values, return code is 0, if new values were read, and 1 if there were no new values.

@ -1,97 +0,0 @@
// SDS011 dust sensor PM2.5 and PM10
// ---------------------
//
// By R. Zschiegner (rz@madavi.de)
// April 2016
//
// Documentation:
// - The iNovaFitness SDS011 datasheet
//
#include "SDS011-select-serial.h"
static const byte SLEEPCMD[19] = {
0xAA, // head
0xB4, // command id
0x06, // data byte 1
0x01, // data byte 2 (set mode)
0x00, // data byte 3 (sleep)
0x00, // data byte 4
0x00, // data byte 5
0x00, // data byte 6
0x00, // data byte 7
0x00, // data byte 8
0x00, // data byte 9
0x00, // data byte 10
0x00, // data byte 11
0x00, // data byte 12
0x00, // data byte 13
0xFF, // data byte 14 (device id byte 1)
0xFF, // data byte 15 (device id byte 2)
0x05, // checksum
0xAB // tail
};
SDS011::SDS011(Stream& serial):
sds_data(serial) {}
// --------------------------------------------------------
// SDS011:read
// --------------------------------------------------------
int SDS011::read(float *p25, float *p10) {
byte buffer;
int value;
int len = 0;
int pm10_serial = 0;
int pm25_serial = 0;
int checksum_is;
int checksum_ok = 0;
int error = 1;
while ((sds_data.available() > 0) && (sds_data.available() >= (10-len))) {
buffer = sds_data.read();
value = int(buffer);
switch (len) {
case (0): if (value != 170) { len = -1; }; break;
case (1): if (value != 192) { len = -1; }; break;
case (2): pm25_serial = value; checksum_is = value; break;
case (3): pm25_serial += (value << 8); checksum_is += value; break;
case (4): pm10_serial = value; checksum_is += value; break;
case (5): pm10_serial += (value << 8); checksum_is += value; break;
case (6): checksum_is += value; break;
case (7): checksum_is += value; break;
case (8): if (value == (checksum_is % 256)) { checksum_ok = 1; } else { len = -1; }; break;
case (9): if (value != 171) { len = -1; }; break;
}
len++;
if (len == 10 && checksum_ok == 1) {
*p10 = (float)pm10_serial/10.0;
*p25 = (float)pm25_serial/10.0;
len = 0; checksum_ok = 0; pm10_serial = 0.0; pm25_serial = 0.0; checksum_is = 0;
error = 0;
}
yield();
}
return error;
}
// --------------------------------------------------------
// SDS011:sleep
// --------------------------------------------------------
void SDS011::sleep() {
for (uint8_t i = 0; i < 19; i++) {
sds_data.write(SLEEPCMD[i]);
}
sds_data.flush();
while (sds_data.available() > 0) {
sds_data.read();
}
}
// --------------------------------------------------------
// SDS011:wakeup
// --------------------------------------------------------
void SDS011::wakeup() {
sds_data.write(0x01);
sds_data.flush();
}

@ -1,25 +0,0 @@
// SDS011 dust sensor PM2.5 and PM10
// ---------------------------------
//
// By R. Zschiegner (rz@madavi.de)
// April 2016
//
// Documentation:
// - The iNovaFitness SDS011 datasheet
//
#if ARDUINO >= 100
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
class SDS011 {
public:
SDS011(Stream& serial);
int read(float *p25, float *p10);
void sleep();
void wakeup();
private:
Stream& sds_data;
};

@ -1,27 +0,0 @@
// SDS011 dust sensor example
// for use with additional Serial ports
// like Arduino Mega
// -----------------------------
#include <SDS011-select-serial.h>
float p10,p25;
int error;
SDS011 my_sds(Serial1);
void setup() {
// initialize normal Serial port
Serial.begin(9600);
// initalize SDS Serial Port
Serial1.begin(9600);
}
void loop() {
error = my_sds.read(&p25,&p10);
if (! error) {
Serial.println("P2.5: "+String(p25));
Serial.println("P10: "+String(p10));
}
delay(100);
}

@ -1,28 +0,0 @@
// SDS011 dust sensor example
// for use with SoftSerial
// -----------------------------
#include <SDS011-select-serial.h>
#include <SoftwareSerial.h>
float p10,p25;
int error;
SoftwareSerial mySerial(10, 11); // RX, TX
SDS011 my_sds(mySerial);
void setup() {
// initialize normal Serial port
Serial.begin(9600);
// initalize SDS Serial Port
mySerial.begin(9600);
}
void loop() {
error = my_sds.read(&p25,&p10);
if (! error) {
Serial.println("P2.5: "+String(p25));
Serial.println("P10: "+String(p10));
}
delay(100);
}

@ -1,9 +0,0 @@
name=SDS011 selectable serial sensor Library
version=0.0.6
author=R. Zschiegner, G. Pape
maintainer=R.Zschiegner <rz@madavi.de>, G.Pape <ubergesundheit@googlemail.com>
sentence=Nova Fitness SDS011 dust sensor library
paragraph=Nova Fitness SDS011 dust sensor library
category=Sensors
url=https://github.com/sensebox/SDS011-select-serial
architectures=esp8266,avr

@ -1,58 +0,0 @@
The Arduino SdFat library provides read/write access to FAT16/FAT32
file systems on SD/SDHC flash cards.
SdFat requires Arduino 1.6x or greater.
Key changes:
The SPI divisor has been replaced by SPISettings in the begin() call.
```
bool begin(uint8_t csPin = SS, SPISettings spiSettings = SPI_FULL_SPEED);
```
Several macros have been defined for backward compatibility.
```
#define SD_SCK_MHZ(maxMhz) SPISettings(1000000UL*maxMhz, MSBFIRST, SPI_MODE0)
// SPI divisor constants
/** Set SCK to max possible rate. */
#define SPI_FULL_SPEED SD_SCK_MHZ(50)
/** Set SCK rate to F_CPU/3 for Due */
#define SPI_DIV3_SPEED SD_SCK_HZ(F_CPU/3)
/** Set SCK rate to F_CPU/4. */
#define SPI_HALF_SPEED SD_SCK_HZ(F_CPU/4)
// ...
```
There are two new classes, SdFatEX and SdFatSoftSpiEX.
Teensy 3.5/3.6 SDIO support has been added. Try the TeensySdioDemo example.
Many other example will work with Teensy SDIO if you use the SdFatSdio classes
and call begin with no parameters.
```
SdFatSdio sd;
....
if (!sd.begin()) {
// Handle failure.
}
```
Please read changes.txt and the html documentation in the extras folder for more information.
Please report problems as issues.
A number of configuration options can be set by editing SdFatConfig.h
define macros. See the html documentation for details
Please read the html documentation for this library. Start with
html/index.html and read the Main Page. Next go to the Classes tab and
read the documentation for the classes SdFat, SdFatEX, SdBaseFile,
SdFile, File, StdioStream, ifstream, ofstream, and others.
Please continue by reading the html documentation.
Updated 26 Apr 2017

@ -1,196 +0,0 @@
// A simple data logger for the Arduino analog pins with optional DS1307
// uses RTClib from https://github.com/adafruit/RTClib
#include <SPI.h>
#include "SdFat.h"
#include "FreeStack.h"
#define SD_CHIP_SELECT SS // SD chip select pin
#define USE_DS1307 0 // set nonzero to use DS1307 RTC
#define LOG_INTERVAL 1000 // mills between entries
#define SENSOR_COUNT 3 // number of analog pins to log
#define ECHO_TO_SERIAL 1 // echo data to serial port if nonzero
#define WAIT_TO_START 1 // Wait for serial input in setup()
#define ADC_DELAY 10 // ADC delay for high impedence sensors
// file system object
SdFat sd;
// text file for logging
ofstream logfile;
// Serial print stream
ArduinoOutStream cout(Serial);
// buffer to format data - makes it eaiser to echo to Serial
char buf[80];
//------------------------------------------------------------------------------
#if SENSOR_COUNT > 6
#error SENSOR_COUNT too large
#endif // SENSOR_COUNT
//------------------------------------------------------------------------------
// store error strings in flash to save RAM
#define error(s) sd.errorHalt(F(s))
//------------------------------------------------------------------------------
#if USE_DS1307
// use RTClib from Adafruit
// https://github.com/adafruit/RTClib
// The Arduino IDE has a bug that causes Wire and RTClib to be loaded even
// if USE_DS1307 is false.
#error remove this line and uncomment the next two lines.
//#include <Wire.h>
//#include <RTClib.h>
RTC_DS1307 RTC; // define the Real Time Clock object
//------------------------------------------------------------------------------
// call back for file timestamps
void dateTime(uint16_t* date, uint16_t* time) {
DateTime now = RTC.now();
// return date using FAT_DATE macro to format fields
*date = FAT_DATE(now.year(), now.month(), now.day());
// return time using FAT_TIME macro to format fields
*time = FAT_TIME(now.hour(), now.minute(), now.second());
}
//------------------------------------------------------------------------------
// format date/time
ostream& operator << (ostream& os, DateTime& dt) {
os << dt.year() << '/' << int(dt.month()) << '/' << int(dt.day()) << ',';
os << int(dt.hour()) << ':' << setfill('0') << setw(2) << int(dt.minute());
os << ':' << setw(2) << int(dt.second()) << setfill(' ');
return os;
}
#endif // USE_DS1307
//------------------------------------------------------------------------------
void setup() {
Serial.begin(9600);
// Wait for USB Serial.
while (!Serial) {
SysCall::yield();
}
// F() stores strings in flash to save RAM
cout << endl << F("FreeStack: ") << FreeStack() << endl;
#if WAIT_TO_START
cout << F("Type any character to start\n");
while (!Serial.available()) {
SysCall::yield();
}
// Discard input.
do {
delay(10);
} while(Serial.available() && Serial.read() >= 0);
#endif // WAIT_TO_START
#if USE_DS1307
// connect to RTC
Wire.begin();
if (!RTC.begin()) {
error("RTC failed");
}
// set date time callback function
SdFile::dateTimeCallback(dateTime);
DateTime now = RTC.now();
cout << now << endl;
#endif // USE_DS1307
// Initialize at the highest speed supported by the board that is
// not over 50 MHz. Try a lower speed if SPI errors occur.
if (!sd.begin(SD_CHIP_SELECT, SD_SCK_MHZ(50))) {
sd.initErrorHalt();
}
// create a new file in root, the current working directory
char name[] = "logger00.csv";
for (uint8_t i = 0; i < 100; i++) {
name[6] = i/10 + '0';
name[7] = i%10 + '0';
if (sd.exists(name)) {
continue;
}
logfile.open(name);
break;
}
if (!logfile.is_open()) {
error("file.open");
}
cout << F("Logging to: ") << name << endl;
cout << F("Type any character to stop\n\n");
// format header in buffer
obufstream bout(buf, sizeof(buf));
bout << F("millis");
#if USE_DS1307
bout << F(",date,time");
#endif // USE_DS1307
for (uint8_t i = 0; i < SENSOR_COUNT; i++) {
bout << F(",sens") << int(i);
}
logfile << buf << endl;
#if ECHO_TO_SERIAL
cout << buf << endl;
#endif // ECHO_TO_SERIAL
}
//------------------------------------------------------------------------------
void loop() {
uint32_t m;
// wait for time to be a multiple of interval
do {
m = millis();
} while (m % LOG_INTERVAL);
// use buffer stream to format line
obufstream bout(buf, sizeof(buf));
// start with time in millis
bout << m;
#if USE_DS1307
DateTime now = RTC.now();
bout << ',' << now;
#endif // USE_DS1307
// read analog pins and format data
for (uint8_t ia = 0; ia < SENSOR_COUNT; ia++) {
#if ADC_DELAY
analogRead(ia);
delay(ADC_DELAY);
#endif // ADC_DELAY
bout << ',' << analogRead(ia);
}
bout << endl;
// log data and flush to SD
logfile << buf << flush;
// check for error
if (!logfile) {
error("write data failed");
}
#if ECHO_TO_SERIAL
cout << buf;
#endif // ECHO_TO_SERIAL
// don't log two points in the same millis
if (m == millis()) {
delay(1);
}
if (!Serial.available()) {
return;
}
logfile.close();
cout << F("Done!");
SysCall::halt();
}

@ -1,46 +0,0 @@
/*
* Program to test Short File Name character case flags.
*/
#include <SPI.h>
#include "SdFat.h"
const uint8_t chipSelect = SS;
SdFat sd;
SdFile file;
const char* name[] = {
"low.low", "low.Mix", "low.UP",
"Mix.low", "Mix.Mix", "Mix.UP",
"UP.low", "UP.Mix", "UP.UP"
};
//------------------------------------------------------------------------------
void setup() {
Serial.begin(9600);
// Wait for USB Serial
while (!Serial) {
SysCall::yield();
}
Serial.println("type any character to start");
while (!Serial.available()) {
SysCall::yield();
}
if (!sd.begin(chipSelect, SD_SCK_MHZ(50))) {
Serial.println("begin failed");
return;
}
for (uint8_t i = 0; i < 9; i++) {
sd.remove(name[i]);
if (!file.open(name[i], O_RDWR | O_CREAT | O_EXCL)) {
sd.errorHalt(name[i]);
}
file.println(name[i]);
file.close();
}
sd.ls(LS_DATE|LS_SIZE);
Serial.println("Done");
}
//------------------------------------------------------------------------------
void loop() {}

@ -1,19 +0,0 @@
#include <SPI.h>
#include "SdFat.h"
// create a serial output stream
ArduinoOutStream cout(Serial);
void setup() {
Serial.begin(9600);
// Wait for USB Serial
while (!Serial) {
SysCall::yield();
}
delay(2000);
cout << "Hello, World!\n";
}
void loop() {}

@ -1,29 +0,0 @@
// This example illustrates use of SdFat's
// minimal unbuffered AVR Serial support.
//
// This is useful for debug and saves RAM
// Will not work on Due, Leonardo, or Teensy
#include <SPI.h>
#include "SdFat.h"
#include "FreeStack.h"
#ifdef UDR0 // Must be AVR with serial port zero.
#include "MinimumSerial.h"
MinimumSerial MiniSerial;
void setup() {
MiniSerial.begin(9600);
MiniSerial.println(FreeStack());
}
void loop() {
int c;
MiniSerial.println(F("Type any Character"));
while ((c = MiniSerial.read()) < 0) {}
MiniSerial.print(F("Read: "));
MiniSerial.println((char)c);
while (MiniSerial.read() >= 0) {}
}
#else // UDR0
#error no AVR serial port 0
#endif // UDR0

@ -1,125 +0,0 @@
/*
* This program is a simple Print benchmark.
*/
#include <SPI.h>
#include <SD.h>
// SD chip select pin
const uint8_t chipSelect = SS;
// number of lines to print
const uint16_t N_PRINT = 20000;
// test file
File file;
//------------------------------------------------------------------------------
void error(const char* s) {
Serial.println(s);
while (1) {
yield();
}
}
//------------------------------------------------------------------------------
void setup() {
Serial.begin(9600);
// Wait for USB Serial
while (!Serial) {
yield();
}
}
//------------------------------------------------------------------------------
void loop() {
uint32_t maxLatency;
uint32_t minLatency;
uint32_t totalLatency;
// Read any existing Serial data.
do {
delay(10);
} while (Serial.available() && Serial.read() >= 0);
// F() stores strings in flash to save RAM
Serial.println(F("Type any character to start"));
while (!Serial.available()) {
yield();
}
// initialize the SD card
if (!SD.begin(chipSelect)) {
error("begin");
}
Serial.println(F("Starting print test. Please wait.\n"));
// do write test
for (int test = 0; test < 2; test++) {
file = SD.open("bench.txt", FILE_WRITE);
if (!file) {
error("open failed");
}
switch(test) {
case 0:
Serial.println(F("Test of println(uint16_t)"));
break;
case 1:
Serial.println(F("Test of println(double)"));
break;
}
maxLatency = 0;
minLatency = 999999;
totalLatency = 0;
uint32_t t = millis();
for (uint16_t i = 0; i < N_PRINT; i++) {
uint32_t m = micros();
switch(test) {
case 0:
file.println(i);
break;
case 1:
file.println((double)0.01*i);
break;
}
if (file.getWriteError()) {
error("write failed");
}
m = micros() - m;
if (maxLatency < m) {
maxLatency = m;
}
if (minLatency > m) {
minLatency = m;
}
totalLatency += m;
}
file.flush();
t = millis() - t;
double s = file.size();
Serial.print(F("Time "));
Serial.print(0.001*t);
Serial.println(F(" sec"));
Serial.print(F("File size "));
Serial.print(0.001*s);
Serial.print(F(" KB\n"));
Serial.print(F("Write "));
Serial.print(s/t);
Serial.print(F(" KB/sec\n"));
Serial.print(F("Maximum latency: "));
Serial.print(maxLatency);
Serial.print(F(" usec, Minimum Latency: "));
Serial.print(minLatency);
Serial.print(F(" usec, Avg Latency: "));
Serial.print(totalLatency/N_PRINT);
Serial.println(F(" usec\n"));
SD.remove("bench.txt");
}
file.close();
Serial.println(F("Done!\n"));
}

@ -1,30 +0,0 @@
/*
* Program to compare size of Arduino SD library with SdFat.
* See SdFatSize.ino for SdFat program.
*/
#include <SPI.h>
#include <SD.h>
File file;
//------------------------------------------------------------------------------
void setup() {
Serial.begin(9600);
// Wait for USB Serial
while (!Serial) {
yield();
}
if (!SD.begin()) {
Serial.println("begin failed");
return;
}
file = SD.open("TEST_SD.TXT", FILE_WRITE);
file.println("Hello");
file.close();
Serial.println("Done");
}
//------------------------------------------------------------------------------
void loop() {}

@ -1,33 +0,0 @@
/*
* Program to compare size of SdFat with Arduino SD library.
* See SD_Size.ino for Arduino SD program.
*
*/
#include <SPI.h>
#include "SdFat.h"
SdFat sd;
SdFile file;
//------------------------------------------------------------------------------
void setup() {
Serial.begin(9600);
// Wait for USB Serial
while (!Serial) {
SysCall::yield();
}
if (!sd.begin()) {
Serial.println("begin failed");
return;
}
file.open("SizeTest.txt", O_RDWR | O_CREAT | O_AT_END);
file.println("Hello");
file.close();
Serial.println("Done");
}
//------------------------------------------------------------------------------
void loop() {}

@ -1,44 +0,0 @@
// Simple demo of the Stream parsInt() member function.
#include <SPI.h>
// The next two lines replace #include <SD.h>.
#include "SdFat.h"
SdFat SD;
// SD card chip select pin - Modify the value of csPin for your SD module.
const uint8_t csPin = SS;
File file;
//------------------------------------------------------------------------------
void setup() {
Serial.begin(9600);
// Wait for USB Serial.
while(!Serial) {
SysCall::yield();
}
Serial.println(F("Type any character to start"));
while (!Serial.available()) {
SysCall::yield();
}
// Initialize the SD.
if (!SD.begin(csPin)) {
Serial.println(F("begin error"));
return;
}
// Create and open the file. Use flag to truncate an existing file.
file = SD.open("stream.txt", O_RDWR|O_CREAT|O_TRUNC);
if (!file) {
Serial.println(F("open error"));
return;
}
// Write a test number to the file.
file.println("12345");
// Rewind the file and read the number with parseInt().
file.seek(0);
int i = file.parseInt();
Serial.print(F("parseInt: "));
Serial.println(i);
file.close();
}
void loop() {}

@ -1,76 +0,0 @@
/*
* Append Example
*
* This program shows how to use open for append.
* The program will append 100 line each time it opens the file.
* The program will open and close the file 100 times.
*/
#include <SPI.h>
#include "SdFat.h"
// SD chip select pin
const uint8_t chipSelect = SS;
// file system object
SdFat sd;
// create Serial stream
ArduinoOutStream cout(Serial);
// store error strings in flash to save RAM
#define error(s) sd.errorHalt(F(s))
//------------------------------------------------------------------------------
void setup() {
// filename for this example
char name[] = "append.txt";
Serial.begin(9600);
// Wait for USB Serial
while (!Serial) {
SysCall::yield();
}
// F() stores strings in flash to save RAM
cout << endl << F("Type any character to start\n");
while (!Serial.available()) {
SysCall::yield();
}
// Initialize at the highest speed supported by the board that is
// not over 50 MHz. Try a lower speed if SPI errors occur.
if (!sd.begin(chipSelect, SD_SCK_MHZ(50))) {
sd.initErrorHalt();
}
cout << F("Appending to: ") << name;
for (uint8_t i = 0; i < 100; i++) {
// open stream for append
ofstream sdout(name, ios::out | ios::app);
if (!sdout) {
error("open failed");
}
// append 100 lines to the file
for (uint8_t j = 0; j < 100; j++) {
// use int() so byte will print as decimal number
sdout << "line " << int(j) << " of pass " << int(i);
sdout << " millis = " << millis() << endl;
}
// close the stream
sdout.close();
if (!sdout) {
error("append data failed");
}
// output progress indicator
if (i % 25 == 0) {
cout << endl;
}
cout << '.';
}
cout << endl << "Done" << endl;
}
//------------------------------------------------------------------------------
void loop() {}

@ -1,81 +0,0 @@
/*
* Calculate the sum and average of a list of floating point numbers
*/
#include <SPI.h>
#include "SdFat.h"
// SD chip select pin
const uint8_t chipSelect = SS;
// object for the SD file system
SdFat sd;
// define a serial output stream
ArduinoOutStream cout(Serial);
//------------------------------------------------------------------------------
void writeTestFile() {
// open the output file
ofstream sdout("AvgTest.txt");
// write a series of float numbers
for (int16_t i = -1001; i < 2000; i += 13) {
sdout << 0.1 * i << endl;
}
if (!sdout) {
sd.errorHalt("sdout failed");
}
sdout.close();
}
//------------------------------------------------------------------------------
void calcAverage() {
uint16_t n = 0; // count of input numbers
double num; // current input number
double sum = 0; // sum of input numbers
// open the input file
ifstream sdin("AvgTest.txt");
// check for an open failure
if (!sdin) {
sd.errorHalt("sdin failed");
}
// read and sum the numbers
while (sdin >> num) {
n++;
sum += num;
}
// print the results
cout << "sum of " << n << " numbers = " << sum << endl;
cout << "average = " << sum/n << endl;
}
//------------------------------------------------------------------------------
void setup() {
Serial.begin(9600);
// Wait for USB Serial
while (!Serial) {
SysCall::yield();
}
// F() stores strings in flash to save RAM
cout << F("Type any character to start\n");
while (!Serial.available()) {
SysCall::yield();
}
// Initialize at the highest speed supported by the board that is
// not over 50 MHz. Try a lower speed if SPI errors occur.
if (!sd.begin(chipSelect, SD_SCK_MHZ(50))) {
sd.initErrorHalt();
}
// write the test file
writeTestFile();
// read the test file and calculate the average
calcAverage();
}
//------------------------------------------------------------------------------
void loop() {}

@ -1,149 +0,0 @@
/*
* This program is a simple binary write/read benchmark
* for the standard Arduino SD.h library.
*/
#include <SPI.h>
#include <SD.h>
// SD chip select pin
const uint8_t chipSelect = SS;
#define FILE_SIZE_MB 5
#define FILE_SIZE (1000000UL*FILE_SIZE_MB)
#define BUF_SIZE 100
uint8_t buf[BUF_SIZE];
// test file
File file;
//------------------------------------------------------------------------------
void error(const char* s) {
Serial.println(s);
while (1) {
yield();
}
}
//------------------------------------------------------------------------------
void setup() {
Serial.begin(9600);
// Wait for USB Serial
while (!Serial) {
yield();
}
}
//------------------------------------------------------------------------------
void loop() {
uint32_t maxLatency;
uint32_t minLatency;
uint32_t totalLatency;
// Discard any input.
do {
delay(10);
} while (Serial.available() && Serial.read() >= 0);
// F() stores strings in flash to save RAM
Serial.println(F("Type any character to start"));
while (!Serial.available()) {
yield();
}
if (!SD.begin(chipSelect)) {
error("begin");
}
// open or create file - truncate existing file.
file = SD.open("Bench.dat", O_RDWR | O_TRUNC | O_CREAT);
if (!file) {
error("open failed");
}
// fill buf with known data
for (uint16_t i = 0; i < (BUF_SIZE-2); i++) {
buf[i] = 'A' + (i % 26);
}
buf[BUF_SIZE-2] = '\r';
buf[BUF_SIZE-1] = '\n';
Serial.print(F("File size "));
Serial.print(FILE_SIZE_MB);
Serial.println(F("MB"));
Serial.print(F("Buffer size "));
Serial.print(BUF_SIZE);
Serial.println(F(" bytes"));
Serial.println(F("Starting write test. Please wait up to a minute"));
// do write test
uint32_t n = FILE_SIZE/sizeof(buf);
maxLatency = 0;
minLatency = 999999;
totalLatency = 0;
uint32_t t = millis();
for (uint32_t i = 0; i < n; i++) {
uint32_t m = micros();
if (file.write(buf, sizeof(buf)) != sizeof(buf)) {
error("write failed");
}
m = micros() - m;
if (maxLatency < m) {
maxLatency = m;
}
if (minLatency > m) {
minLatency = m;
}
totalLatency += m;
}
file.flush();
t = millis() - t;
double s = file.size();
Serial.print(F("Write "));
Serial.print(s/t);
Serial.print(F(" KB/sec\n"));
Serial.print(F("Maximum latency: "));
Serial.print(maxLatency);
Serial.print(F(" usec, Minimum Latency: "));
Serial.print(minLatency);
Serial.print(F(" usec, Avg Latency: "));
Serial.print(totalLatency/n);
Serial.print(F(" usec\n\n"));
Serial.println(F("Starting read test. Please wait up to a minute"));
// do read test
file.seek(0);
maxLatency = 0;
minLatency = 99999;
totalLatency = 0;
t = millis();
for (uint32_t i = 0; i < n; i++) {
buf[BUF_SIZE-1] = 0;
uint32_t m = micros();
if (file.read(buf, sizeof(buf)) != sizeof(buf)) {
error("read failed");
}
m = micros() - m;
if (maxLatency < m) {
maxLatency = m;
}
if (minLatency > m) {
minLatency = m;
}
totalLatency += m;
if (buf[BUF_SIZE-1] != '\n') {
error("data check");
}
}
t = millis() - t;
Serial.print(F("Read "));
Serial.print(s/t);
Serial.print(F(" KB/sec\n"));
Serial.print(F("Maximum latency: "));
Serial.print(maxLatency);
Serial.print(F(" usec, Minimum Latency: "));
Serial.print(minLatency);
Serial.print(F(" usec, Avg Latency: "));
Serial.print(totalLatency/n);
Serial.print(F(" usec\n\n"));
Serial.print(F("Done\n\n"));
file.close();
}

@ -1,38 +0,0 @@
/*
* Use of ibufsteam to parse a line and obufstream to format a line
*/
#include <SPI.h>
#include "SdFat.h"
// create a serial output stream
ArduinoOutStream cout(Serial);
//------------------------------------------------------------------------------
void setup() {
char buf[20]; // buffer for formatted line
int i, j, k; // values from parsed line
Serial.begin(9600);
// Wait for USB Serial
while (!Serial) {
SysCall::yield();
}
delay(2000);
// initialize input string
ibufstream bin("123 456 789");
// parse the string "123 456 789"
bin >> i >> j >> k;
// initialize output buffer
obufstream bout(buf, sizeof(buf));
// format the output string
bout << k << ',' << j << ',' << i << endl;
// write the string to serial
cout << buf;
}
void loop() {}

@ -1,38 +0,0 @@
/*
* Demo of ArduinoInStream and ArduinoOutStream
*/
#include <SPI.h>
#include "SdFat.h"
// create serial output stream
ArduinoOutStream cout(Serial);
// input line buffer
char cinBuf[40];
// create serial input stream
ArduinoInStream cin(Serial, cinBuf, sizeof(cinBuf));
//------------------------------------------------------------------------------
void setup() {
Serial.begin(9600);
// Wait for USB Serial
while (!Serial) {
SysCall::yield();
}
}
//------------------------------------------------------------------------------
void loop() {
int32_t n = 0;
cout << "\nenter an integer\n";
cin.readline();
if (cin >> n) {
cout << "The number is: " << n;
} else {
// will fail if no digits or not in range [-2147483648, 2147483647]
cout << "Invalid input: " << cinBuf;
}
cout << endl;
}

@ -1,62 +0,0 @@
/*
* Append a line to a file - demo of pathnames and streams
*/
#include <SPI.h>
#include "SdFat.h"
// SD chip select pin
const uint8_t chipSelect = SS;
// file system object
SdFat sd;
// define a serial output stream
ArduinoOutStream cout(Serial);
//------------------------------------------------------------------------------
/*
* Append a line to logfile.txt
*/
void logEvent(const char *msg) {
// create dir if needed
sd.mkdir("logs/2014/Jan");
// create or open a file for append
ofstream sdlog("logs/2014/Jan/logfile.txt", ios::out | ios::app);
// append a line to the file
sdlog << msg << endl;
// check for errors
if (!sdlog) {
sd.errorHalt("append failed");
}
sdlog.close();
}
//------------------------------------------------------------------------------
void setup() {
Serial.begin(9600);
// Wait for USB Serial
while (!Serial) {
SysCall::yield();
}
// F() stores strings in flash to save RAM
cout << F("Type any character to start\n");
while (!Serial.available()) {
SysCall::yield();
}
delay(400); // catch Due reset problem
// Initialize at the highest speed supported by the board that is
// not over 50 MHz. Try a lower speed if SPI errors occur.
if (!sd.begin(chipSelect, SD_SCK_MHZ(50))) {
sd.initErrorHalt();
}
// append a line to the logfile
logEvent("Another line for the logfile");
cout << F("Done - check /logs/2014/Jan/logfile.txt on the SD") << endl;
}
//------------------------------------------------------------------------------
void loop() {}

@ -1,110 +0,0 @@
// Demo of rewriting a line read by fgets
#include <SPI.h>
#include "SdFat.h"
// SD card chip select pin
const uint8_t chipSelect = SS;
// file system
SdFat sd;
// print stream
ArduinoOutStream cout(Serial);
//------------------------------------------------------------------------------
// store error strings in flash memory
#define error(s) sd.errorHalt(F(s))
//------------------------------------------------------------------------------
void demoFgets() {
char line[25];
int c;
uint32_t pos;
// open test file
SdFile rdfile("fgets.txt", O_RDWR);
// check for open error
if (!rdfile.isOpen()) {
error("demoFgets");
}
// list file
cout << F("-----Before Rewrite\r\n");
while ((c = rdfile.read()) >= 0) {
Serial.write(c);
}
rdfile.rewind();
// read lines from the file to get position
while (1) {
pos = rdfile.curPosition();
if (rdfile.fgets(line, sizeof(line)) < 0) {
error("Line not found");
}
// find line that contains "Line C"
if (strstr(line, "Line C")) {
break;
}
}
// rewrite line with 'C'
if (!rdfile.seekSet(pos)) {
error("seekSet");
}
rdfile.println("Line R");
rdfile.rewind();
// list file
cout << F("\r\n-----After Rewrite\r\n");
while ((c = rdfile.read()) >= 0) {
Serial.write(c);
}
// close so rewrite is not lost
rdfile.close();
}
//------------------------------------------------------------------------------
void makeTestFile() {
// create or open test file
SdFile wrfile("fgets.txt", O_WRITE | O_CREAT | O_TRUNC);
// check for open error
if (!wrfile.isOpen()) {
error("MakeTestFile");
}
// write test file
wrfile.print(F(
"Line A\r\n"
"Line B\r\n"
"Line C\r\n"
"Line D\r\n"
"Line E\r\n"
));
wrfile.close();
}
//------------------------------------------------------------------------------
void setup() {
Serial.begin(9600);
// Wait for USB Serial
while (!Serial) {
SysCall::yield();
}
cout << F("Type any character to start\n");
while (!Serial.available()) {
SysCall::yield();
}
// Initialize at the highest speed supported by the board that is
// not over 50 MHz. Try a lower speed if SPI errors occur.
if (!sd.begin(chipSelect, SD_SCK_MHZ(50))) {
sd.initErrorHalt();
}
makeTestFile();
demoFgets();
cout << F("\nDone\n");
}
void loop() {}

@ -1,50 +0,0 @@
/*
* Read the logfile created by the eventlog.ino example.
* Demo of pathnames and working directories
*/
#include <SPI.h>
#include "SdFat.h"
// SD chip select pin
const uint8_t chipSelect = SS;
// file system object
SdFat sd;
// define a serial output stream
ArduinoOutStream cout(Serial);
//------------------------------------------------------------------------------
void setup() {
int c;
Serial.begin(9600);
// Wait for USB Serial
while (!Serial) {
SysCall::yield();
}
// Initialize at the highest speed supported by the board that is
// not over 50 MHz. Try a lower speed if SPI errors occur.
if (!sd.begin(chipSelect, SD_SCK_MHZ(50))) {
sd.initErrorHalt();
}
// set current working directory
if (!sd.chdir("logs/2014/Jan/")) {
sd.errorHalt("chdir failed. Did you run eventlog.ino?");
}
// open file in current working directory
ifstream file("logfile.txt");
if (!file.is_open()) {
sd.errorHalt("open failed");
}
// copy the file to Serial
while ((c = file.get()) >= 0) {
cout << (char)c;
}
cout << "Done" << endl;
}
//------------------------------------------------------------------------------
void loop() {}

@ -1,34 +0,0 @@
Old and debug examples.
AnalogLogger - A simple data logger for one or more analog pins.
append - This sketch creates a large file by successive
open/write/close operations.
average - A demonstration of parsing floating point numbers.
BaseExtCaseTest - Long file name test.
benchSD - A read/write benchmark for the standard Arduino SD.h library.
bufstream - ibufsteam to parse a line and obufstream to format a line.
cin_cout - Demo of ArduinoInStream and ArduinoOutStream.
eventlog - Append a line to a file - demo of pathnames and streams.
fgetsRewrite - Demo of rewriting a line read by fgets.
HelloWorld - Create a serial output stream.
MiniSerial - SdFat minimal serial support for debug.
PrintBenchmarkSD - Bench mark SD.h print.
readlog - Read file. Demo of pathnames and current working directory.
SD_Size - Determine flash used by SD.h example.
SdFatSize - Determine flash used by SdFat.
StreamParseInt - Simple demo of the Stream parsInt() member function.

@ -1,39 +0,0 @@
#ifndef AnalogBinLogger_h
#define AnalogBinLogger_h
//------------------------------------------------------------------------------
// First block of file.
struct metadata_t {
unsigned long adcFrequency; // ADC clock frequency
unsigned long cpuFrequency; // CPU clock frequency
unsigned long sampleInterval; // Sample interval in CPU cycles.
unsigned long recordEightBits; // Size of ADC values, nonzero for 8-bits.
unsigned long pinCount; // Number of analog pins in a sample.
unsigned long pinNumber[123]; // List of pin numbers in a sample.
};
//------------------------------------------------------------------------------
// Data block for 8-bit ADC mode.
const size_t DATA_DIM8 = 508;
struct block8_t {
unsigned short count; // count of data values
unsigned short overrun; // count of overruns since last block
unsigned char data[DATA_DIM8];
};
//------------------------------------------------------------------------------
// Data block for 10-bit ADC mode.
const size_t DATA_DIM16 = 254;
struct block16_t {
unsigned short count; // count of data values
unsigned short overrun; // count of overruns since last block
unsigned short data[DATA_DIM16];
};
//------------------------------------------------------------------------------
// Data block for PC use
struct adcdata_t {
unsigned short count; // count of data values
unsigned short overrun; // count of overruns since last block
union {
unsigned char u8[DATA_DIM8];
unsigned short u16[DATA_DIM16];
} data;
};
#endif // AnalogBinLogger_h

@ -1,826 +0,0 @@
/**
* This program logs data from the Arduino ADC to a binary file.
*
* Samples are logged at regular intervals. Each Sample consists of the ADC
* values for the analog pins defined in the PIN_LIST array. The pins numbers
* may be in any order.
*
* Edit the configuration constants below to set the sample pins, sample rate,
* and other configuration values.
*
* If your SD card has a long write latency, it may be necessary to use
* slower sample rates. Using a Mega Arduino helps overcome latency
* problems since 13 512 byte buffers will be used.
*
* Each 512 byte data block in the file has a four byte header followed by up
* to 508 bytes of data. (508 values in 8-bit mode or 254 values in 10-bit mode)
* Each block contains an integral number of samples with unused space at the
* end of the block.
*
* Data is written to the file using a SD multiple block write command.
*/
#ifdef __AVR__
#include <SPI.h>
#include "SdFat.h"
#include "FreeStack.h"
#include "AnalogBinLogger.h"
//------------------------------------------------------------------------------
// Analog pin number list for a sample. Pins may be in any order and pin
// numbers may be repeated.
const uint8_t PIN_LIST[] = {0, 1, 2, 3, 4};
//------------------------------------------------------------------------------
// Sample rate in samples per second.
const float SAMPLE_RATE = 5000; // Must be 0.25 or greater.
// The interval between samples in seconds, SAMPLE_INTERVAL, may be set to a
// constant instead of being calculated from SAMPLE_RATE. SAMPLE_RATE is not
// used in the code below. For example, setting SAMPLE_INTERVAL = 2.0e-4
// will result in a 200 microsecond sample interval.
const float SAMPLE_INTERVAL = 1.0/SAMPLE_RATE;
// Setting ROUND_SAMPLE_INTERVAL non-zero will cause the sample interval to
// be rounded to a a multiple of the ADC clock period and will reduce sample
// time jitter.
#define ROUND_SAMPLE_INTERVAL 1
//------------------------------------------------------------------------------
// ADC clock rate.
// The ADC clock rate is normally calculated from the pin count and sample
// interval. The calculation attempts to use the lowest possible ADC clock
// rate.
//
// You can select an ADC clock rate by defining the symbol ADC_PRESCALER to
// one of these values. You must choose an appropriate ADC clock rate for
// your sample interval.
// #define ADC_PRESCALER 7 // F_CPU/128 125 kHz on an Uno
// #define ADC_PRESCALER 6 // F_CPU/64 250 kHz on an Uno
// #define ADC_PRESCALER 5 // F_CPU/32 500 kHz on an Uno
// #define ADC_PRESCALER 4 // F_CPU/16 1000 kHz on an Uno
// #define ADC_PRESCALER 3 // F_CPU/8 2000 kHz on an Uno (8-bit mode only)
//------------------------------------------------------------------------------
// Reference voltage. See the processor data-sheet for reference details.
// uint8_t const ADC_REF = 0; // External Reference AREF pin.
uint8_t const ADC_REF = (1 << REFS0); // Vcc Reference.
// uint8_t const ADC_REF = (1 << REFS1); // Internal 1.1 (only 644 1284P Mega)
// uint8_t const ADC_REF = (1 << REFS1) | (1 << REFS0); // Internal 1.1 or 2.56
//------------------------------------------------------------------------------
// File definitions.
//
// Maximum file size in blocks.
// The program creates a contiguous file with FILE_BLOCK_COUNT 512 byte blocks.
// This file is flash erased using special SD commands. The file will be
// truncated if logging is stopped early.
const uint32_t FILE_BLOCK_COUNT = 256000;
// log file base name. Must be six characters or less.
#define FILE_BASE_NAME "analog"
// Set RECORD_EIGHT_BITS non-zero to record only the high 8-bits of the ADC.
#define RECORD_EIGHT_BITS 0
//------------------------------------------------------------------------------
// Pin definitions.
//
// Digital pin to indicate an error, set to -1 if not used.
// The led blinks for fatal errors. The led goes on solid for SD write
// overrun errors and logging continues.
const int8_t ERROR_LED_PIN = 3;
// SD chip select pin.
const uint8_t SD_CS_PIN = SS;
//------------------------------------------------------------------------------
// Buffer definitions.
//
// The logger will use SdFat's buffer plus BUFFER_BLOCK_COUNT additional
// buffers. QUEUE_DIM must be a power of two larger than
//(BUFFER_BLOCK_COUNT + 1).
//
#if RAMEND < 0X8FF
#error Too little SRAM
//
#elif RAMEND < 0X10FF
// Use total of two 512 byte buffers.
const uint8_t BUFFER_BLOCK_COUNT = 1;
// Dimension for queues of 512 byte SD blocks.
const uint8_t QUEUE_DIM = 4; // Must be a power of two!
//
#elif RAMEND < 0X20FF
// Use total of five 512 byte buffers.
const uint8_t BUFFER_BLOCK_COUNT = 4;
// Dimension for queues of 512 byte SD blocks.
const uint8_t QUEUE_DIM = 8; // Must be a power of two!
//
#elif RAMEND < 0X40FF
// Use total of 13 512 byte buffers.
const uint8_t BUFFER_BLOCK_COUNT = 12;
// Dimension for queues of 512 byte SD blocks.
const uint8_t QUEUE_DIM = 16; // Must be a power of two!
//
#else // RAMEND
// Use total of 29 512 byte buffers.
const uint8_t BUFFER_BLOCK_COUNT = 28;
// Dimension for queues of 512 byte SD blocks.
const uint8_t QUEUE_DIM = 32; // Must be a power of two!
#endif // RAMEND
//==============================================================================
// End of configuration constants.
//==============================================================================
// Temporary log file. Will be deleted if a reset or power failure occurs.
#define TMP_FILE_NAME "tmp_log.bin"
// Size of file base name. Must not be larger than six.
const uint8_t BASE_NAME_SIZE = sizeof(FILE_BASE_NAME) - 1;
// Number of analog pins to log.
const uint8_t PIN_COUNT = sizeof(PIN_LIST)/sizeof(PIN_LIST[0]);
// Minimum ADC clock cycles per sample interval
const uint16_t MIN_ADC_CYCLES = 15;
// Extra cpu cycles to setup ADC with more than one pin per sample.
const uint16_t ISR_SETUP_ADC = PIN_COUNT > 1 ? 100 : 0;
// Maximum cycles for timer0 system interrupt, millis, micros.
const uint16_t ISR_TIMER0 = 160;
//==============================================================================
SdFat sd;
SdBaseFile binFile;
char binName[13] = FILE_BASE_NAME "00.bin";
#if RECORD_EIGHT_BITS
const size_t SAMPLES_PER_BLOCK = DATA_DIM8/PIN_COUNT;
typedef block8_t block_t;
#else // RECORD_EIGHT_BITS
const size_t SAMPLES_PER_BLOCK = DATA_DIM16/PIN_COUNT;
typedef block16_t block_t;
#endif // RECORD_EIGHT_BITS
block_t* emptyQueue[QUEUE_DIM];
uint8_t emptyHead;
uint8_t emptyTail;
block_t* fullQueue[QUEUE_DIM];
volatile uint8_t fullHead; // volatile insures non-interrupt code sees changes.
uint8_t fullTail;
// queueNext assumes QUEUE_DIM is a power of two
inline uint8_t queueNext(uint8_t ht) {
return (ht + 1) & (QUEUE_DIM -1);
}
//==============================================================================
// Interrupt Service Routines
// Pointer to current buffer.
block_t* isrBuf;
// Need new buffer if true.
bool isrBufNeeded = true;
// overrun count
uint16_t isrOver = 0;
// ADC configuration for each pin.
uint8_t adcmux[PIN_COUNT];
uint8_t adcsra[PIN_COUNT];
uint8_t adcsrb[PIN_COUNT];
uint8_t adcindex = 1;
// Insure no timer events are missed.
volatile bool timerError = false;
volatile bool timerFlag = false;
//------------------------------------------------------------------------------
// ADC done interrupt.
ISR(ADC_vect) {
// Read ADC data.
#if RECORD_EIGHT_BITS
uint8_t d = ADCH;
#else // RECORD_EIGHT_BITS
// This will access ADCL first.
uint16_t d = ADC;
#endif // RECORD_EIGHT_BITS
if (isrBufNeeded && emptyHead == emptyTail) {
// no buffers - count overrun
if (isrOver < 0XFFFF) {
isrOver++;
}
// Avoid missed timer error.
timerFlag = false;
return;
}
// Start ADC
if (PIN_COUNT > 1) {
ADMUX = adcmux[adcindex];
ADCSRB = adcsrb[adcindex];
ADCSRA = adcsra[adcindex];
if (adcindex == 0) {
timerFlag = false;
}
adcindex = adcindex < (PIN_COUNT - 1) ? adcindex + 1 : 0;
} else {
timerFlag = false;
}
// Check for buffer needed.
if (isrBufNeeded) {
// Remove buffer from empty queue.
isrBuf = emptyQueue[emptyTail];
emptyTail = queueNext(emptyTail);
isrBuf->count = 0;
isrBuf->overrun = isrOver;
isrBufNeeded = false;
}
// Store ADC data.
isrBuf->data[isrBuf->count++] = d;
// Check for buffer full.
if (isrBuf->count >= PIN_COUNT*SAMPLES_PER_BLOCK) {
// Put buffer isrIn full queue.
uint8_t tmp = fullHead; // Avoid extra fetch of volatile fullHead.
fullQueue[tmp] = (block_t*)isrBuf;
fullHead = queueNext(tmp);
// Set buffer needed and clear overruns.
isrBufNeeded = true;
isrOver = 0;
}
}
//------------------------------------------------------------------------------
// timer1 interrupt to clear OCF1B
ISR(TIMER1_COMPB_vect) {
// Make sure ADC ISR responded to timer event.
if (timerFlag) {
timerError = true;
}
timerFlag = true;
}
//==============================================================================
// Error messages stored in flash.
#define error(msg) {sd.errorPrint(F(msg));fatalBlink();}
//------------------------------------------------------------------------------
//
void fatalBlink() {
while (true) {
if (ERROR_LED_PIN >= 0) {
digitalWrite(ERROR_LED_PIN, HIGH);
delay(200);
digitalWrite(ERROR_LED_PIN, LOW);
delay(200);
}
}
}
//==============================================================================
#if ADPS0 != 0 || ADPS1 != 1 || ADPS2 != 2
#error unexpected ADC prescaler bits
#endif
//------------------------------------------------------------------------------
// initialize ADC and timer1
void adcInit(metadata_t* meta) {
uint8_t adps; // prescaler bits for ADCSRA
uint32_t ticks = F_CPU*SAMPLE_INTERVAL + 0.5; // Sample interval cpu cycles.
if (ADC_REF & ~((1 << REFS0) | (1 << REFS1))) {
error("Invalid ADC reference");
}
#ifdef ADC_PRESCALER
if (ADC_PRESCALER > 7 || ADC_PRESCALER < 2) {
error("Invalid ADC prescaler");
}
adps = ADC_PRESCALER;
#else // ADC_PRESCALER
// Allow extra cpu cycles to change ADC settings if more than one pin.
int32_t adcCycles = (ticks - ISR_TIMER0)/PIN_COUNT - ISR_SETUP_ADC;
for (adps = 7; adps > 0; adps--) {
if (adcCycles >= (MIN_ADC_CYCLES << adps)) {
break;
}
}
#endif // ADC_PRESCALER
meta->adcFrequency = F_CPU >> adps;
if (meta->adcFrequency > (RECORD_EIGHT_BITS ? 2000000 : 1000000)) {
error("Sample Rate Too High");
}
#if ROUND_SAMPLE_INTERVAL
// Round so interval is multiple of ADC clock.
ticks += 1 << (adps - 1);
ticks >>= adps;
ticks <<= adps;
#endif // ROUND_SAMPLE_INTERVAL
if (PIN_COUNT > sizeof(meta->pinNumber)/sizeof(meta->pinNumber[0])) {
error("Too many pins");
}
meta->pinCount = PIN_COUNT;
meta->recordEightBits = RECORD_EIGHT_BITS;
for (int i = 0; i < PIN_COUNT; i++) {
uint8_t pin = PIN_LIST[i];
if (pin >= NUM_ANALOG_INPUTS) {
error("Invalid Analog pin number");
}
meta->pinNumber[i] = pin;
// Set ADC reference and low three bits of analog pin number.
adcmux[i] = (pin & 7) | ADC_REF;
if (RECORD_EIGHT_BITS) {
adcmux[i] |= 1 << ADLAR;
}
// If this is the first pin, trigger on timer/counter 1 compare match B.
adcsrb[i] = i == 0 ? (1 << ADTS2) | (1 << ADTS0) : 0;
#ifdef MUX5
if (pin > 7) {
adcsrb[i] |= (1 << MUX5);
}
#endif // MUX5
adcsra[i] = (1 << ADEN) | (1 << ADIE) | adps;
adcsra[i] |= i == 0 ? 1 << ADATE : 1 << ADSC;
}
// Setup timer1
TCCR1A = 0;
uint8_t tshift;
if (ticks < 0X10000) {
// no prescale, CTC mode
TCCR1B = (1 << WGM13) | (1 << WGM12) | (1 << CS10);
tshift = 0;
} else if (ticks < 0X10000*8) {
// prescale 8, CTC mode
TCCR1B = (1 << WGM13) | (1 << WGM12) | (1 << CS11);
tshift = 3;
} else if (ticks < 0X10000*64) {
// prescale 64, CTC mode
TCCR1B = (1 << WGM13) | (1 << WGM12) | (1 << CS11) | (1 << CS10);
tshift = 6;
} else if (ticks < 0X10000*256) {
// prescale 256, CTC mode
TCCR1B = (1 << WGM13) | (1 << WGM12) | (1 << CS12);
tshift = 8;
} else if (ticks < 0X10000*1024) {
// prescale 1024, CTC mode
TCCR1B = (1 << WGM13) | (1 << WGM12) | (1 << CS12) | (1 << CS10);
tshift = 10;
} else {
error("Sample Rate Too Slow");
}
// divide by prescaler
ticks >>= tshift;
// set TOP for timer reset
ICR1 = ticks - 1;
// compare for ADC start
OCR1B = 0;
// multiply by prescaler
ticks <<= tshift;
// Sample interval in CPU clock ticks.
meta->sampleInterval = ticks;
meta->cpuFrequency = F_CPU;
float sampleRate = (float)meta->cpuFrequency/meta->sampleInterval;
Serial.print(F("Sample pins:"));
for (uint8_t i = 0; i < meta->pinCount; i++) {
Serial.print(' ');
Serial.print(meta->pinNumber[i], DEC);
}
Serial.println();
Serial.print(F("ADC bits: "));
Serial.println(meta->recordEightBits ? 8 : 10);
Serial.print(F("ADC clock kHz: "));
Serial.println(meta->adcFrequency/1000);
Serial.print(F("Sample Rate: "));
Serial.println(sampleRate);
Serial.print(F("Sample interval usec: "));
Serial.println(1000000.0/sampleRate, 4);
}
//------------------------------------------------------------------------------
// enable ADC and timer1 interrupts
void adcStart() {
// initialize ISR
isrBufNeeded = true;
isrOver = 0;
adcindex = 1;
// Clear any pending interrupt.
ADCSRA |= 1 << ADIF;
// Setup for first pin.
ADMUX = adcmux[0];
ADCSRB = adcsrb[0];
ADCSRA = adcsra[0];
// Enable timer1 interrupts.
timerError = false;
timerFlag = false;
TCNT1 = 0;
TIFR1 = 1 << OCF1B;
TIMSK1 = 1 << OCIE1B;
}
//------------------------------------------------------------------------------
void adcStop() {
TIMSK1 = 0;
ADCSRA = 0;
}
//------------------------------------------------------------------------------
// Convert binary file to csv file.
void binaryToCsv() {
uint8_t lastPct = 0;
block_t buf;
metadata_t* pm;
uint32_t t0 = millis();
char csvName[13];
StdioStream csvStream;
if (!binFile.isOpen()) {
Serial.println(F("No current binary file"));
return;
}
binFile.rewind();
if (!binFile.read(&buf , 512) == 512) {
error("Read metadata failed");
}
// Create a new csv file.
strcpy(csvName, binName);
strcpy(&csvName[BASE_NAME_SIZE + 3], "csv");
if (!csvStream.fopen(csvName, "w")) {
error("open csvStream failed");
}
Serial.println();
Serial.print(F("Writing: "));
Serial.print(csvName);
Serial.println(F(" - type any character to stop"));
pm = (metadata_t*)&buf;
csvStream.print(F("Interval,"));
float intervalMicros = 1.0e6*pm->sampleInterval/(float)pm->cpuFrequency;
csvStream.print(intervalMicros, 4);
csvStream.println(F(",usec"));
for (uint8_t i = 0; i < pm->pinCount; i++) {
if (i) {
csvStream.putc(',');
}
csvStream.print(F("pin"));
csvStream.print(pm->pinNumber[i]);
}
csvStream.println();
uint32_t tPct = millis();
while (!Serial.available() && binFile.read(&buf, 512) == 512) {
if (buf.count == 0) {
break;
}
if (buf.overrun) {
csvStream.print(F("OVERRUN,"));
csvStream.println(buf.overrun);
}
for (uint16_t j = 0; j < buf.count; j += PIN_COUNT) {
for (uint16_t i = 0; i < PIN_COUNT; i++) {
if (i) {
csvStream.putc(',');
}
csvStream.print(buf.data[i + j]);
}
csvStream.println();
}
if ((millis() - tPct) > 1000) {
uint8_t pct = binFile.curPosition()/(binFile.fileSize()/100);
if (pct != lastPct) {
tPct = millis();
lastPct = pct;
Serial.print(pct, DEC);
Serial.println('%');
}
}
if (Serial.available()) {
break;
}
}
csvStream.fclose();
Serial.print(F("Done: "));
Serial.print(0.001*(millis() - t0));
Serial.println(F(" Seconds"));
}
//------------------------------------------------------------------------------
// read data file and check for overruns
void checkOverrun() {
bool headerPrinted = false;
block_t buf;
uint32_t bgnBlock, endBlock;
uint32_t bn = 0;
if (!binFile.isOpen()) {
Serial.println(F("No current binary file"));
return;
}
if (!binFile.contiguousRange(&bgnBlock, &endBlock)) {
error("contiguousRange failed");
}
binFile.rewind();
Serial.println();
Serial.println(F("Checking overrun errors - type any character to stop"));
if (!binFile.read(&buf , 512) == 512) {
error("Read metadata failed");
}
bn++;
while (binFile.read(&buf, 512) == 512) {
if (buf.count == 0) {
break;
}
if (buf.overrun) {
if (!headerPrinted) {
Serial.println();
Serial.println(F("Overruns:"));
Serial.println(F("fileBlockNumber,sdBlockNumber,overrunCount"));
headerPrinted = true;
}
Serial.print(bn);
Serial.print(',');
Serial.print(bgnBlock + bn);
Serial.print(',');
Serial.println(buf.overrun);
}
bn++;
}
if (!headerPrinted) {
Serial.println(F("No errors found"));
} else {
Serial.println(F("Done"));
}
}
//------------------------------------------------------------------------------
// dump data file to Serial
void dumpData() {
block_t buf;
if (!binFile.isOpen()) {
Serial.println(F("No current binary file"));
return;
}
binFile.rewind();
if (binFile.read(&buf , 512) != 512) {
error("Read metadata failed");
}
Serial.println();
Serial.println(F("Type any character to stop"));
delay(1000);
while (!Serial.available() && binFile.read(&buf , 512) == 512) {
if (buf.count == 0) {
break;
}
if (buf.overrun) {
Serial.print(F("OVERRUN,"));
Serial.println(buf.overrun);
}
for (uint16_t i = 0; i < buf.count; i++) {
Serial.print(buf.data[i], DEC);
if ((i+1)%PIN_COUNT) {
Serial.print(',');
} else {
Serial.println();
}
}
}
Serial.println(F("Done"));
}
//------------------------------------------------------------------------------
// log data
// max number of blocks to erase per erase call
uint32_t const ERASE_SIZE = 262144L;
void logData() {
uint32_t bgnBlock, endBlock;
// Allocate extra buffer space.
block_t block[BUFFER_BLOCK_COUNT];
Serial.println();
// Initialize ADC and timer1.
adcInit((metadata_t*) &block[0]);
// Find unused file name.
if (BASE_NAME_SIZE > 6) {
error("FILE_BASE_NAME too long");
}
while (sd.exists(binName)) {
if (binName[BASE_NAME_SIZE + 1] != '9') {
binName[BASE_NAME_SIZE + 1]++;
} else {
binName[BASE_NAME_SIZE + 1] = '0';
if (binName[BASE_NAME_SIZE] == '9') {
error("Can't create file name");
}
binName[BASE_NAME_SIZE]++;
}
}
// Delete old tmp file.
if (sd.exists(TMP_FILE_NAME)) {
Serial.println(F("Deleting tmp file"));
if (!sd.remove(TMP_FILE_NAME)) {
error("Can't remove tmp file");
}
}
// Create new file.
Serial.println(F("Creating new file"));
binFile.close();
if (!binFile.createContiguous(TMP_FILE_NAME, 512 * FILE_BLOCK_COUNT)) {
error("createContiguous failed");
}
// Get the address of the file on the SD.
if (!binFile.contiguousRange(&bgnBlock, &endBlock)) {
error("contiguousRange failed");
}
// Use SdFat's internal buffer.
uint8_t* cache = (uint8_t*)sd.vol()->cacheClear();
if (cache == 0) {
error("cacheClear failed");
}
// Flash erase all data in the file.
Serial.println(F("Erasing all data"));
uint32_t bgnErase = bgnBlock;
uint32_t endErase;
while (bgnErase < endBlock) {
endErase = bgnErase + ERASE_SIZE;
if (endErase > endBlock) {
endErase = endBlock;
}
if (!sd.card()->erase(bgnErase, endErase)) {
error("erase failed");
}
bgnErase = endErase + 1;
}
// Start a multiple block write.
if (!sd.card()->writeStart(bgnBlock, FILE_BLOCK_COUNT)) {
error("writeBegin failed");
}
// Write metadata.
if (!sd.card()->writeData((uint8_t*)&block[0])) {
error("Write metadata failed");
}
// Initialize queues.
emptyHead = emptyTail = 0;
fullHead = fullTail = 0;
// Use SdFat buffer for one block.
emptyQueue[emptyHead] = (block_t*)cache;
emptyHead = queueNext(emptyHead);
// Put rest of buffers in the empty queue.
for (uint8_t i = 0; i < BUFFER_BLOCK_COUNT; i++) {
emptyQueue[emptyHead] = &block[i];
emptyHead = queueNext(emptyHead);
}
// Give SD time to prepare for big write.
delay(1000);
Serial.println(F("Logging - type any character to stop"));
// Wait for Serial Idle.
Serial.flush();
delay(10);
uint32_t bn = 1;
uint32_t t0 = millis();
uint32_t t1 = t0;
uint32_t overruns = 0;
uint32_t count = 0;
uint32_t maxLatency = 0;
// Start logging interrupts.
adcStart();
while (1) {
if (fullHead != fullTail) {
// Get address of block to write.
block_t* pBlock = fullQueue[fullTail];
// Write block to SD.
uint32_t usec = micros();
if (!sd.card()->writeData((uint8_t*)pBlock)) {
error("write data failed");
}
usec = micros() - usec;
t1 = millis();
if (usec > maxLatency) {
maxLatency = usec;
}
count += pBlock->count;
// Add overruns and possibly light LED.
if (pBlock->overrun) {
overruns += pBlock->overrun;
if (ERROR_LED_PIN >= 0) {
digitalWrite(ERROR_LED_PIN, HIGH);
}
}
// Move block to empty queue.
emptyQueue[emptyHead] = pBlock;
emptyHead = queueNext(emptyHead);
fullTail = queueNext(fullTail);
bn++;
if (bn == FILE_BLOCK_COUNT) {
// File full so stop ISR calls.
adcStop();
break;
}
}
if (timerError) {
error("Missed timer event - rate too high");
}
if (Serial.available()) {
// Stop ISR calls.
adcStop();
if (isrBuf != 0 && isrBuf->count >= PIN_COUNT) {
// Truncate to last complete sample.
isrBuf->count = PIN_COUNT*(isrBuf->count/PIN_COUNT);
// Put buffer in full queue.
fullQueue[fullHead] = isrBuf;
fullHead = queueNext(fullHead);
isrBuf = 0;
}
if (fullHead == fullTail) {
break;
}
}
}
if (!sd.card()->writeStop()) {
error("writeStop failed");
}
// Truncate file if recording stopped early.
if (bn != FILE_BLOCK_COUNT) {
Serial.println(F("Truncating file"));
if (!binFile.truncate(512L * bn)) {
error("Can't truncate file");
}
}
if (!binFile.rename(sd.vwd(), binName)) {
error("Can't rename file");
}
Serial.print(F("File renamed: "));
Serial.println(binName);
Serial.print(F("Max block write usec: "));
Serial.println(maxLatency);
Serial.print(F("Record time sec: "));
Serial.println(0.001*(t1 - t0), 3);
Serial.print(F("Sample count: "));
Serial.println(count/PIN_COUNT);
Serial.print(F("Samples/sec: "));
Serial.println((1000.0/PIN_COUNT)*count/(t1-t0));
Serial.print(F("Overruns: "));
Serial.println(overruns);
Serial.println(F("Done"));
}
//------------------------------------------------------------------------------
void setup(void) {
if (ERROR_LED_PIN >= 0) {
pinMode(ERROR_LED_PIN, OUTPUT);
}
Serial.begin(9600);
// Read the first sample pin to init the ADC.
analogRead(PIN_LIST[0]);
Serial.print(F("FreeStack: "));
Serial.println(FreeStack());
// Initialize at the highest speed supported by the board that is
// not over 50 MHz. Try a lower speed if SPI errors occur.
if (!sd.begin(SD_CS_PIN, SD_SCK_MHZ(50))) {
sd.initErrorPrint();
fatalBlink();
}
}
//------------------------------------------------------------------------------
void loop(void) {
// Read any Serial data.
do {
delay(10);
} while (Serial.available() && Serial.read() >= 0);
Serial.println();
Serial.println(F("type:"));
Serial.println(F("c - convert file to csv"));
Serial.println(F("d - dump data to Serial"));
Serial.println(F("e - overrun error details"));
Serial.println(F("r - record ADC data"));
while(!Serial.available()) {
SysCall::yield();
}
char c = tolower(Serial.read());
if (ERROR_LED_PIN >= 0) {
digitalWrite(ERROR_LED_PIN, LOW);
}
// Read any Serial data.
do {
delay(10);
} while (Serial.available() && Serial.read() >= 0);
if (c == 'c') {
binaryToCsv();
} else if (c == 'd') {
dumpData();
} else if (c == 'e') {
checkOverrun();
} else if (c == 'r') {
logData();
} else {
Serial.println(F("Invalid entry"));
}
}
#else // __AVR__
#error This program is only for AVR.
#endif // __AVR__

@ -1,124 +0,0 @@
/*
* Example use of chdir(), ls(), mkdir(), and rmdir().
*/
#include <SPI.h>
#include "SdFat.h"
// SD card chip select pin.
const uint8_t chipSelect = SS;
//------------------------------------------------------------------------------
// File system object.
SdFat sd;
// Use for file creation in folders.
SdFile file;
// Create a Serial output stream.
ArduinoOutStream cout(Serial);
// Buffer for Serial input.
char cinBuf[40];
// Create a serial input stream.
ArduinoInStream cin(Serial, cinBuf, sizeof(cinBuf));
//==============================================================================
// Error messages stored in flash.
#define error(msg) sd.errorHalt(F(msg))
//------------------------------------------------------------------------------
void setup() {
Serial.begin(9600);
// Wait for USB Serial
while (!Serial) {
SysCall::yield();
}
delay(1000);
cout << F("Type any character to start\n");
// Wait for input line and discard.
cin.readline();
cout << endl;
// Initialize at the highest speed supported by the board that is
// not over 50 MHz. Try a lower speed if SPI errors occur.
if (!sd.begin(chipSelect, SD_SCK_MHZ(50))) {
sd.initErrorHalt();
}
if (sd.exists("Folder1")
|| sd.exists("Folder1/file1.txt")
|| sd.exists("Folder1/File2.txt")) {
error("Please remove existing Folder1, file1.txt, and File2.txt");
}
int rootFileCount = 0;
sd.vwd()->rewind();
while (file.openNext(sd.vwd(), O_READ)) {
if (!file.isHidden()) {
rootFileCount++;
}
file.close();
if (rootFileCount > 10) {
error("Too many files in root. Please use an empty SD.");
}
}
if (rootFileCount) {
cout << F("\nPlease use an empty SD for best results.\n\n");
delay(1000);
}
// Create a new folder.
if (!sd.mkdir("Folder1")) {
error("Create Folder1 failed");
}
cout << F("Created Folder1\n");
// Create a file in Folder1 using a path.
if (!file.open("Folder1/file1.txt", O_CREAT | O_WRITE)) {
error("create Folder1/file1.txt failed");
}
file.close();
cout << F("Created Folder1/file1.txt\n");
// Change volume working directory to Folder1.
if (!sd.chdir("Folder1")) {
error("chdir failed for Folder1.\n");
}
cout << F("chdir to Folder1\n");
// Create File2.txt in current directory.
if (!file.open("File2.txt", O_CREAT | O_WRITE)) {
error("create File2.txt failed");
}
file.close();
cout << F("Created File2.txt in current directory\n");
cout << F("\nList of files on the SD.\n");
sd.ls("/", LS_R);
// Remove files from current directory.
if (!sd.remove("file1.txt") || !sd.remove("File2.txt")) {
error("remove failed");
}
cout << F("\nfile1.txt and File2.txt removed.\n");
// Change current directory to root.
if (!sd.chdir()) {
error("chdir to root failed.\n");
}
cout << F("\nList of files on the SD.\n");
sd.ls(LS_R);
// Remove Folder1.
if (!sd.rmdir("Folder1")) {
error("rmdir for Folder1 failed\n");
}
cout << F("\nFolder1 removed.\n");
cout << F("\nList of files on the SD.\n");
sd.ls(LS_R);
cout << F("Done!\n");
}
//------------------------------------------------------------------------------
// Nothing happens in loop.
void loop() {}

@ -1,102 +0,0 @@
// Example use of lfnOpenNext and open by index.
// You can use test files located in
// SdFat/examples/LongFileName/testFiles.
#include<SPI.h>
#include "SdFat.h"
#include "FreeStack.h"
// SD card chip select pin.
const uint8_t SD_CS_PIN = SS;
SdFat sd;
SdFile file;
SdFile dirFile;
// Number of files found.
uint16_t n = 0;
// Max of ten files since files are selected with a single digit.
const uint16_t nMax = 10;
// Position of file's directory entry.
uint16_t dirIndex[nMax];
//------------------------------------------------------------------------------
void setup() {
Serial.begin(9600);
while (!Serial) {}
delay(1000);
// Print the location of some test files.
Serial.println(F("\r\n"
"You can use test files located in\r\n"
"SdFat/examples/LongFileName/testFiles"));
// Initialize at the highest speed supported by the board that is
// not over 50 MHz. Try a lower speed if SPI errors occur.
if (!sd.begin(SD_CS_PIN, SD_SCK_MHZ(50))) {
sd.initErrorHalt();
}
Serial.print(F("FreeStack: "));
Serial.println(FreeStack());
Serial.println();
// List files in root directory.
if (!dirFile.open("/", O_READ)) {
sd.errorHalt("open root failed");
}
while (n < nMax && file.openNext(&dirFile, O_READ)) {
// Skip directories and hidden files.
if (!file.isSubDir() && !file.isHidden()) {
// Save dirIndex of file in directory.
dirIndex[n] = file.dirIndex();
// Print the file number and name.
Serial.print(n++);
Serial.write(' ');
file.printName(&Serial);
Serial.println();
}
file.close();
}
}
//------------------------------------------------------------------------------
void loop() {
int c;
// Read any existing Serial data.
do {
delay(10);
} while (Serial.available() && Serial.read() >= 0);
Serial.print(F("\r\nEnter File Number: "));
while (!Serial.available()) {
SysCall::yield();
}
c = Serial.read();
uint8_t i = c - '0';
if (!isdigit(c) || i >= n) {
Serial.println(F("Invald number"));
return;
}
Serial.println(i);
if (!file.open(&dirFile, dirIndex[i], O_READ)) {
sd.errorHalt(F("open"));
}
Serial.println();
char last = 0;
// Copy up to 500 characters to Serial.
for (int k = 0; k < 500 && (c = file.read()) > 0; k++) {
Serial.write(last = (char)c);
}
// Add new line if missing from last line.
if (last != '\n') {
Serial.println();
}
file.close();
Serial.flush();
delay(100);
}

@ -1,4 +0,0 @@
This is "A long name can be 255 characters.txt"
This file has a typical Long File Name.
The maximum length of a Long File Name is 255 characters.

@ -1 +0,0 @@
LFN,NAME.TXT is not 8.3 since it has a comma.

@ -1,5 +0,0 @@
MIXCASE.txt does not have a Long File Name.
Starting with NT, file names of this form,
have the basename and extension character case
encoded in two bits of the 8.3 directory entry.

@ -1,2 +0,0 @@
Not_8_3.txt has a Long File Name
since the basename is mixed case.

@ -1,2 +0,0 @@
With Blank.txt
Just another example of a Long File Name.

@ -1,2 +0,0 @@
"With Two.dots.txt"
Lots of reasons this is a Long File Name.

@ -1,5 +0,0 @@
lower.txt does not have a Long File Name.
Starting with NT, file names of this form,
have the basename and extension character case
encoded in two bits of the 8.3 directory entry.

@ -1,5 +0,0 @@
mixed.TXT does not have a Long File Name.
Starting with NT, file names of this form,
have the basename and extension character case
encoded in two bits of the 8.3 directory entry.

@ -1,655 +0,0 @@
/**
* This program logs data to a binary file. Functions are included
* to convert the binary file to a csv text file.
*
* Samples are logged at regular intervals. The maximum logging rate
* depends on the quality of your SD card and the time required to
* read sensor data. This example has been tested at 500 Hz with
* good SD card on an Uno. 4000 HZ is possible on a Due.
*
* If your SD card has a long write latency, it may be necessary to use
* slower sample rates. Using a Mega Arduino helps overcome latency
* problems since 12 512 byte buffers will be used.
*
* Data is written to the file using a SD multiple block write command.
*/
#include <SPI.h>
#include "SdFat.h"
#include "FreeStack.h"
#include "UserTypes.h"
#ifdef __AVR_ATmega328P__
#include "MinimumSerial.h"
MinimumSerial MinSerial;
#define Serial MinSerial
#endif // __AVR_ATmega328P__
//==============================================================================
// Start of configuration constants.
//==============================================================================
// Abort run on an overrun. Data before the overrun will be saved.
#define ABORT_ON_OVERRUN 1
//------------------------------------------------------------------------------
//Interval between data records in microseconds.
const uint32_t LOG_INTERVAL_USEC = 2000;
//------------------------------------------------------------------------------
// Set USE_SHARED_SPI non-zero for use of an SPI sensor.
// May not work for some cards.
#ifndef USE_SHARED_SPI
#define USE_SHARED_SPI 0
#endif // USE_SHARED_SPI
//------------------------------------------------------------------------------
// Pin definitions.
//
// SD chip select pin.
const uint8_t SD_CS_PIN = SS;
//
// Digital pin to indicate an error, set to -1 if not used.
// The led blinks for fatal errors. The led goes on solid for
// overrun errors and logging continues unless ABORT_ON_OVERRUN
// is non-zero.
#ifdef ERROR_LED_PIN
#undef ERROR_LED_PIN
#endif // ERROR_LED_PIN
const int8_t ERROR_LED_PIN = -1;
//------------------------------------------------------------------------------
// File definitions.
//
// Maximum file size in blocks.
// The program creates a contiguous file with FILE_BLOCK_COUNT 512 byte blocks.
// This file is flash erased using special SD commands. The file will be
// truncated if logging is stopped early.
const uint32_t FILE_BLOCK_COUNT = 256000;
//
// log file base name if not defined in UserTypes.h
#ifndef FILE_BASE_NAME
#define FILE_BASE_NAME "data"
#endif // FILE_BASE_NAME
//------------------------------------------------------------------------------
// Buffer definitions.
//
// The logger will use SdFat's buffer plus BUFFER_BLOCK_COUNT-1 additional
// buffers.
//
#ifndef RAMEND
// Assume ARM. Use total of ten 512 byte buffers.
const uint8_t BUFFER_BLOCK_COUNT = 10;
//
#elif RAMEND < 0X8FF
#error Too little SRAM
//
#elif RAMEND < 0X10FF
// Use total of two 512 byte buffers.
const uint8_t BUFFER_BLOCK_COUNT = 2;
//
#elif RAMEND < 0X20FF
// Use total of four 512 byte buffers.
const uint8_t BUFFER_BLOCK_COUNT = 4;
//
#else // RAMEND
// Use total of 12 512 byte buffers.
const uint8_t BUFFER_BLOCK_COUNT = 12;
#endif // RAMEND
//==============================================================================
// End of configuration constants.
//==============================================================================
// Temporary log file. Will be deleted if a reset or power failure occurs.
#define TMP_FILE_NAME FILE_BASE_NAME "##.bin"
// Size of file base name.
const uint8_t BASE_NAME_SIZE = sizeof(FILE_BASE_NAME) - 1;
const uint8_t FILE_NAME_DIM = BASE_NAME_SIZE + 7;
char binName[FILE_NAME_DIM] = FILE_BASE_NAME "00.bin";
SdFat sd;
SdBaseFile binFile;
// Number of data records in a block.
const uint16_t DATA_DIM = (512 - 4)/sizeof(data_t);
//Compute fill so block size is 512 bytes. FILL_DIM may be zero.
const uint16_t FILL_DIM = 512 - 4 - DATA_DIM*sizeof(data_t);
struct block_t {
uint16_t count;
uint16_t overrun;
data_t data[DATA_DIM];
uint8_t fill[FILL_DIM];
};
//==============================================================================
// Error messages stored in flash.
#define error(msg) {sd.errorPrint(&Serial, F(msg));fatalBlink();}
//------------------------------------------------------------------------------
//
void fatalBlink() {
while (true) {
SysCall::yield();
if (ERROR_LED_PIN >= 0) {
digitalWrite(ERROR_LED_PIN, HIGH);
delay(200);
digitalWrite(ERROR_LED_PIN, LOW);
delay(200);
}
}
}
//------------------------------------------------------------------------------
// read data file and check for overruns
void checkOverrun() {
bool headerPrinted = false;
block_t block;
uint32_t bn = 0;
if (!binFile.isOpen()) {
Serial.println();
Serial.println(F("No current binary file"));
return;
}
binFile.rewind();
Serial.println();
Serial.print(F("FreeStack: "));
Serial.println(FreeStack());
Serial.println(F("Checking overrun errors - type any character to stop"));
while (binFile.read(&block, 512) == 512) {
if (block.count == 0) {
break;
}
if (block.overrun) {
if (!headerPrinted) {
Serial.println();
Serial.println(F("Overruns:"));
Serial.println(F("fileBlockNumber,sdBlockNumber,overrunCount"));
headerPrinted = true;
}
Serial.print(bn);
Serial.print(',');
Serial.print(binFile.firstBlock() + bn);
Serial.print(',');
Serial.println(block.overrun);
}
bn++;
}
if (!headerPrinted) {
Serial.println(F("No errors found"));
} else {
Serial.println(F("Done"));
}
}
//-----------------------------------------------------------------------------
// Convert binary file to csv file.
void binaryToCsv() {
uint8_t lastPct = 0;
block_t block;
uint32_t t0 = millis();
uint32_t syncCluster = 0;
SdFile csvFile;
char csvName[FILE_NAME_DIM];
if (!binFile.isOpen()) {
Serial.println();
Serial.println(F("No current binary file"));
return;
}
Serial.println();
Serial.print(F("FreeStack: "));
Serial.println(FreeStack());
// Create a new csvFile.
strcpy(csvName, binName);
strcpy(&csvName[BASE_NAME_SIZE + 3], "csv");
if (!csvFile.open(csvName, O_WRITE | O_CREAT | O_TRUNC)) {
error("open csvFile failed");
}
binFile.rewind();
Serial.print(F("Writing: "));
Serial.print(csvName);
Serial.println(F(" - type any character to stop"));
printHeader(&csvFile);
uint32_t tPct = millis();
while (!Serial.available() && binFile.read(&block, 512) == 512) {
uint16_t i;
if (block.count == 0 || block.count > DATA_DIM) {
break;
}
if (block.overrun) {
csvFile.print(F("OVERRUN,"));
csvFile.println(block.overrun);
}
for (i = 0; i < block.count; i++) {
printData(&csvFile, &block.data[i]);
}
if (csvFile.curCluster() != syncCluster) {
csvFile.sync();
syncCluster = csvFile.curCluster();
}
if ((millis() - tPct) > 1000) {
uint8_t pct = binFile.curPosition()/(binFile.fileSize()/100);
if (pct != lastPct) {
tPct = millis();
lastPct = pct;
Serial.print(pct, DEC);
Serial.println('%');
}
}
if (Serial.available()) {
break;
}
}
csvFile.close();
Serial.print(F("Done: "));
Serial.print(0.001*(millis() - t0));
Serial.println(F(" Seconds"));
}
//-----------------------------------------------------------------------------
void createBinFile() {
// max number of blocks to erase per erase call
const uint32_t ERASE_SIZE = 262144L;
uint32_t bgnBlock, endBlock;
// Delete old tmp file.
if (sd.exists(TMP_FILE_NAME)) {
Serial.println(F("Deleting tmp file " TMP_FILE_NAME));
if (!sd.remove(TMP_FILE_NAME)) {
error("Can't remove tmp file");
}
}
// Create new file.
Serial.println(F("\nCreating new file"));
binFile.close();
if (!binFile.createContiguous(TMP_FILE_NAME, 512 * FILE_BLOCK_COUNT)) {
error("createContiguous failed");
}
// Get the address of the file on the SD.
if (!binFile.contiguousRange(&bgnBlock, &endBlock)) {
error("contiguousRange failed");
}
// Flash erase all data in the file.
Serial.println(F("Erasing all data"));
uint32_t bgnErase = bgnBlock;
uint32_t endErase;
while (bgnErase < endBlock) {
endErase = bgnErase + ERASE_SIZE;
if (endErase > endBlock) {
endErase = endBlock;
}
if (!sd.card()->erase(bgnErase, endErase)) {
error("erase failed");
}
bgnErase = endErase + 1;
}
}
//------------------------------------------------------------------------------
// dump data file to Serial
void dumpData() {
block_t block;
if (!binFile.isOpen()) {
Serial.println();
Serial.println(F("No current binary file"));
return;
}
binFile.rewind();
Serial.println();
Serial.println(F("Type any character to stop"));
delay(1000);
printHeader(&Serial);
while (!Serial.available() && binFile.read(&block , 512) == 512) {
if (block.count == 0) {
break;
}
if (block.overrun) {
Serial.print(F("OVERRUN,"));
Serial.println(block.overrun);
}
for (uint16_t i = 0; i < block.count; i++) {
printData(&Serial, &block.data[i]);
}
}
Serial.println(F("Done"));
}
//------------------------------------------------------------------------------
// log data
void logData() {
createBinFile();
recordBinFile();
renameBinFile();
}
//------------------------------------------------------------------------------
void openBinFile() {
char name[FILE_NAME_DIM];
strcpy(name, binName);
Serial.println(F("\nEnter two digit version"));
Serial.write(name, BASE_NAME_SIZE);
for (int i = 0; i < 2; i++) {
while (!Serial.available()) {
SysCall::yield();
}
char c = Serial.read();
Serial.write(c);
if (c < '0' || c > '9') {
Serial.println(F("\nInvalid digit"));
return;
}
name[BASE_NAME_SIZE + i] = c;
}
Serial.println(&name[BASE_NAME_SIZE+2]);
if (!sd.exists(name)) {
Serial.println(F("File does not exist"));
return;
}
binFile.close();
strcpy(binName, name);
if (!binFile.open(binName, O_READ)) {
Serial.println(F("open failed"));
return;
}
Serial.println(F("File opened"));
}
//------------------------------------------------------------------------------
void recordBinFile() {
const uint8_t QUEUE_DIM = BUFFER_BLOCK_COUNT + 1;
// Index of last queue location.
const uint8_t QUEUE_LAST = QUEUE_DIM - 1;
// Allocate extra buffer space.
block_t block[BUFFER_BLOCK_COUNT - 1];
block_t* curBlock = 0;
block_t* emptyStack[BUFFER_BLOCK_COUNT];
uint8_t emptyTop;
uint8_t minTop;
block_t* fullQueue[QUEUE_DIM];
uint8_t fullHead = 0;
uint8_t fullTail = 0;
// Use SdFat's internal buffer.
emptyStack[0] = (block_t*)sd.vol()->cacheClear();
if (emptyStack[0] == 0) {
error("cacheClear failed");
}
// Put rest of buffers on the empty stack.
for (int i = 1; i < BUFFER_BLOCK_COUNT; i++) {
emptyStack[i] = &block[i - 1];
}
emptyTop = BUFFER_BLOCK_COUNT;
minTop = BUFFER_BLOCK_COUNT;
// Start a multiple block write.
if (!sd.card()->writeStart(binFile.firstBlock())) {
error("writeStart failed");
}
Serial.print(F("FreeStack: "));
Serial.println(FreeStack());
Serial.println(F("Logging - type any character to stop"));
bool closeFile = false;
uint32_t bn = 0;
uint32_t maxLatency = 0;
uint32_t overrun = 0;
uint32_t overrunTotal = 0;
uint32_t logTime = micros();
while(1) {
// Time for next data record.
logTime += LOG_INTERVAL_USEC;
if (Serial.available()) {
closeFile = true;
}
if (closeFile) {
if (curBlock != 0) {
// Put buffer in full queue.
fullQueue[fullHead] = curBlock;
fullHead = fullHead < QUEUE_LAST ? fullHead + 1 : 0;
curBlock = 0;
}
} else {
if (curBlock == 0 && emptyTop != 0) {
curBlock = emptyStack[--emptyTop];
if (emptyTop < minTop) {
minTop = emptyTop;
}
curBlock->count = 0;
curBlock->overrun = overrun;
overrun = 0;
}
if ((int32_t)(logTime - micros()) < 0) {
error("Rate too fast");
}
int32_t delta;
do {
delta = micros() - logTime;
} while (delta < 0);
if (curBlock == 0) {
overrun++;
overrunTotal++;
if (ERROR_LED_PIN >= 0) {
digitalWrite(ERROR_LED_PIN, HIGH);
}
#if ABORT_ON_OVERRUN
Serial.println(F("Overrun abort"));
break;
#endif // ABORT_ON_OVERRUN
} else {
#if USE_SHARED_SPI
sd.card()->spiStop();
#endif // USE_SHARED_SPI
acquireData(&curBlock->data[curBlock->count++]);
#if USE_SHARED_SPI
sd.card()->spiStart();
#endif // USE_SHARED_SPI
if (curBlock->count == DATA_DIM) {
fullQueue[fullHead] = curBlock;
fullHead = fullHead < QUEUE_LAST ? fullHead + 1 : 0;
curBlock = 0;
}
}
}
if (fullHead == fullTail) {
// Exit loop if done.
if (closeFile) {
break;
}
} else if (!sd.card()->isBusy()) {
// Get address of block to write.
block_t* pBlock = fullQueue[fullTail];
fullTail = fullTail < QUEUE_LAST ? fullTail + 1 : 0;
// Write block to SD.
uint32_t usec = micros();
if (!sd.card()->writeData((uint8_t*)pBlock)) {
error("write data failed");
}
usec = micros() - usec;
if (usec > maxLatency) {
maxLatency = usec;
}
// Move block to empty queue.
emptyStack[emptyTop++] = pBlock;
bn++;
if (bn == FILE_BLOCK_COUNT) {
// File full so stop
break;
}
}
}
if (!sd.card()->writeStop()) {
error("writeStop failed");
}
Serial.print(F("Min Free buffers: "));
Serial.println(minTop);
Serial.print(F("Max block write usec: "));
Serial.println(maxLatency);
Serial.print(F("Overruns: "));
Serial.println(overrunTotal);
// Truncate file if recording stopped early.
if (bn != FILE_BLOCK_COUNT) {
Serial.println(F("Truncating file"));
if (!binFile.truncate(512L * bn)) {
error("Can't truncate file");
}
}
}
//------------------------------------------------------------------------------
void recoverTmpFile() {
uint16_t count;
if (!binFile.open(TMP_FILE_NAME, O_RDWR)) {
return;
}
if (binFile.read(&count, 2) != 2 || count != DATA_DIM) {
error("Please delete existing " TMP_FILE_NAME);
}
Serial.println(F("\nRecovering data in tmp file " TMP_FILE_NAME));
uint32_t bgnBlock = 0;
uint32_t endBlock = binFile.fileSize()/512 - 1;
// find last used block.
while (bgnBlock < endBlock) {
uint32_t midBlock = (bgnBlock + endBlock + 1)/2;
binFile.seekSet(512*midBlock);
if (binFile.read(&count, 2) != 2) error("read");
if (count == 0 || count > DATA_DIM) {
endBlock = midBlock - 1;
} else {
bgnBlock = midBlock;
}
}
// truncate after last used block.
if (!binFile.truncate(512*(bgnBlock + 1))) {
error("Truncate " TMP_FILE_NAME " failed");
}
renameBinFile();
}
//-----------------------------------------------------------------------------
void renameBinFile() {
while (sd.exists(binName)) {
if (binName[BASE_NAME_SIZE + 1] != '9') {
binName[BASE_NAME_SIZE + 1]++;
} else {
binName[BASE_NAME_SIZE + 1] = '0';
if (binName[BASE_NAME_SIZE] == '9') {
error("Can't create file name");
}
binName[BASE_NAME_SIZE]++;
}
}
if (!binFile.rename(sd.vwd(), binName)) {
error("Can't rename file");
}
Serial.print(F("File renamed: "));
Serial.println(binName);
Serial.print(F("File size: "));
Serial.print(binFile.fileSize()/512);
Serial.println(F(" blocks"));
}
//------------------------------------------------------------------------------
void testSensor() {
const uint32_t interval = 200000;
int32_t diff;
data_t data;
Serial.println(F("\nTesting - type any character to stop\n"));
// Wait for Serial Idle.
delay(1000);
printHeader(&Serial);
uint32_t m = micros();
while (!Serial.available()) {
m += interval;
do {
diff = m - micros();
} while (diff > 0);
acquireData(&data);
printData(&Serial, &data);
}
}
//------------------------------------------------------------------------------
void setup(void) {
if (ERROR_LED_PIN >= 0) {
pinMode(ERROR_LED_PIN, OUTPUT);
}
Serial.begin(9600);
// Wait for USB Serial
while (!Serial) {
SysCall::yield();
}
Serial.print(F("\nFreeStack: "));
Serial.println(FreeStack());
Serial.print(F("Records/block: "));
Serial.println(DATA_DIM);
if (sizeof(block_t) != 512) {
error("Invalid block size");
}
// Allow userSetup access to SPI bus.
pinMode(SD_CS_PIN, OUTPUT);
digitalWrite(SD_CS_PIN, HIGH);
// Setup sensors.
userSetup();
// Initialize at the highest speed supported by the board that is
// not over 50 MHz. Try a lower speed if SPI errors occur.
if (!sd.begin(SD_CS_PIN, SD_SCK_MHZ(50))) {
sd.initErrorPrint(&Serial);
fatalBlink();
}
// recover existing tmp file.
if (sd.exists(TMP_FILE_NAME)) {
Serial.println(F("\nType 'Y' to recover existing tmp file " TMP_FILE_NAME));
while (!Serial.available()) {
SysCall::yield();
}
if (Serial.read() == 'Y') {
recoverTmpFile();
} else {
error("'Y' not typed, please manually delete " TMP_FILE_NAME);
}
}
}
//------------------------------------------------------------------------------
void loop(void) {
// Read any Serial data.
do {
delay(10);
} while (Serial.available() && Serial.read() >= 0);
Serial.println();
Serial.println(F("type:"));
Serial.println(F("b - open existing bin file"));
Serial.println(F("c - convert file to csv"));
Serial.println(F("d - dump data to Serial"));
Serial.println(F("e - overrun error details"));
Serial.println(F("l - list files"));
Serial.println(F("r - record data"));
Serial.println(F("t - test without logging"));
while(!Serial.available()) {
SysCall::yield();
}
#if WDT_YIELD_TIME_MICROS
Serial.println(F("LowLatencyLogger can not run with watchdog timer"));
SysCall::halt();
#endif
char c = tolower(Serial.read());
// Discard extra Serial data.
do {
delay(10);
} while (Serial.available() && Serial.read() >= 0);
if (ERROR_LED_PIN >= 0) {
digitalWrite(ERROR_LED_PIN, LOW);
}
if (c == 'b') {
openBinFile();
} else if (c == 'c') {
binaryToCsv();
} else if (c == 'd') {
dumpData();
} else if (c == 'e') {
checkOverrun();
} else if (c == 'l') {
Serial.println(F("\nls:"));
sd.ls(&Serial, LS_SIZE);
} else if (c == 'r') {
logData();
} else if (c == 't') {
testSensor();
} else {
Serial.println(F("Invalid entry"));
}
}

@ -1,41 +0,0 @@
#include "UserTypes.h"
// User data functions. Modify these functions for your data items.
// Start time for data
static uint32_t startMicros;
// Acquire a data record.
void acquireData(data_t* data) {
data->time = micros();
for (int i = 0; i < ADC_DIM; i++) {
data->adc[i] = analogRead(i);
}
}
// Print a data record.
void printData(Print* pr, data_t* data) {
if (startMicros == 0) {
startMicros = data->time;
}
pr->print(data->time - startMicros);
for (int i = 0; i < ADC_DIM; i++) {
pr->write(',');
pr->print(data->adc[i]);
}
pr->println();
}
// Print data header.
void printHeader(Print* pr) {
startMicros = 0;
pr->print(F("micros"));
for (int i = 0; i < ADC_DIM; i++) {
pr->print(F(",adc"));
pr->print(i);
}
pr->println();
}
// Sensor setup
void userSetup() {
}

@ -1,15 +0,0 @@
#ifndef UserTypes_h
#define UserTypes_h
#include "Arduino.h"
// User data types. Modify for your data items.
#define FILE_BASE_NAME "adc4pin"
const uint8_t ADC_DIM = 4;
struct data_t {
uint32_t time;
uint16_t adc[ADC_DIM];
};
void acquireData(data_t* data);
void printData(Print* pr, data_t* data);
void printHeader(Print* pr);
void userSetup();
#endif // UserTypes_h

@ -1,655 +0,0 @@
/**
* This program logs data to a binary file. Functions are included
* to convert the binary file to a csv text file.
*
* Samples are logged at regular intervals. The maximum logging rate
* depends on the quality of your SD card and the time required to
* read sensor data. This example has been tested at 500 Hz with
* good SD card on an Uno. 4000 HZ is possible on a Due.
*
* If your SD card has a long write latency, it may be necessary to use
* slower sample rates. Using a Mega Arduino helps overcome latency
* problems since 12 512 byte buffers will be used.
*
* Data is written to the file using a SD multiple block write command.
*/
#include <SPI.h>
#include "SdFat.h"
#include "FreeStack.h"
#include "UserTypes.h"
#ifdef __AVR_ATmega328P__
#include "MinimumSerial.h"
MinimumSerial MinSerial;
#define Serial MinSerial
#endif // __AVR_ATmega328P__
//==============================================================================
// Start of configuration constants.
//==============================================================================
// Abort run on an overrun. Data before the overrun will be saved.
#define ABORT_ON_OVERRUN 1
//------------------------------------------------------------------------------
//Interval between data records in microseconds.
const uint32_t LOG_INTERVAL_USEC = 2000;
//------------------------------------------------------------------------------
// Set USE_SHARED_SPI non-zero for use of an SPI sensor.
// May not work for some cards.
#ifndef USE_SHARED_SPI
#define USE_SHARED_SPI 0
#endif // USE_SHARED_SPI
//------------------------------------------------------------------------------
// Pin definitions.
//
// SD chip select pin.
const uint8_t SD_CS_PIN = SS;
//
// Digital pin to indicate an error, set to -1 if not used.
// The led blinks for fatal errors. The led goes on solid for
// overrun errors and logging continues unless ABORT_ON_OVERRUN
// is non-zero.
#ifdef ERROR_LED_PIN
#undef ERROR_LED_PIN
#endif // ERROR_LED_PIN
const int8_t ERROR_LED_PIN = -1;
//------------------------------------------------------------------------------
// File definitions.
//
// Maximum file size in blocks.
// The program creates a contiguous file with FILE_BLOCK_COUNT 512 byte blocks.
// This file is flash erased using special SD commands. The file will be
// truncated if logging is stopped early.
const uint32_t FILE_BLOCK_COUNT = 256000;
//
// log file base name if not defined in UserTypes.h
#ifndef FILE_BASE_NAME
#define FILE_BASE_NAME "data"
#endif // FILE_BASE_NAME
//------------------------------------------------------------------------------
// Buffer definitions.
//
// The logger will use SdFat's buffer plus BUFFER_BLOCK_COUNT-1 additional
// buffers.
//
#ifndef RAMEND
// Assume ARM. Use total of ten 512 byte buffers.
const uint8_t BUFFER_BLOCK_COUNT = 10;
//
#elif RAMEND < 0X8FF
#error Too little SRAM
//
#elif RAMEND < 0X10FF
// Use total of two 512 byte buffers.
const uint8_t BUFFER_BLOCK_COUNT = 2;
//
#elif RAMEND < 0X20FF
// Use total of four 512 byte buffers.
const uint8_t BUFFER_BLOCK_COUNT = 4;
//
#else // RAMEND
// Use total of 12 512 byte buffers.
const uint8_t BUFFER_BLOCK_COUNT = 12;
#endif // RAMEND
//==============================================================================
// End of configuration constants.
//==============================================================================
// Temporary log file. Will be deleted if a reset or power failure occurs.
#define TMP_FILE_NAME FILE_BASE_NAME "##.bin"
// Size of file base name.
const uint8_t BASE_NAME_SIZE = sizeof(FILE_BASE_NAME) - 1;
const uint8_t FILE_NAME_DIM = BASE_NAME_SIZE + 7;
char binName[FILE_NAME_DIM] = FILE_BASE_NAME "00.bin";
SdFat sd;
SdBaseFile binFile;
// Number of data records in a block.
const uint16_t DATA_DIM = (512 - 4)/sizeof(data_t);
//Compute fill so block size is 512 bytes. FILL_DIM may be zero.
const uint16_t FILL_DIM = 512 - 4 - DATA_DIM*sizeof(data_t);
struct block_t {
uint16_t count;
uint16_t overrun;
data_t data[DATA_DIM];
uint8_t fill[FILL_DIM];
};
//==============================================================================
// Error messages stored in flash.
#define error(msg) {sd.errorPrint(&Serial, F(msg));fatalBlink();}
//------------------------------------------------------------------------------
//
void fatalBlink() {
while (true) {
SysCall::yield();
if (ERROR_LED_PIN >= 0) {
digitalWrite(ERROR_LED_PIN, HIGH);
delay(200);
digitalWrite(ERROR_LED_PIN, LOW);
delay(200);
}
}
}
//------------------------------------------------------------------------------
// read data file and check for overruns
void checkOverrun() {
bool headerPrinted = false;
block_t block;
uint32_t bn = 0;
if (!binFile.isOpen()) {
Serial.println();
Serial.println(F("No current binary file"));
return;
}
binFile.rewind();
Serial.println();
Serial.print(F("FreeStack: "));
Serial.println(FreeStack());
Serial.println(F("Checking overrun errors - type any character to stop"));
while (binFile.read(&block, 512) == 512) {
if (block.count == 0) {
break;
}
if (block.overrun) {
if (!headerPrinted) {
Serial.println();
Serial.println(F("Overruns:"));
Serial.println(F("fileBlockNumber,sdBlockNumber,overrunCount"));
headerPrinted = true;
}
Serial.print(bn);
Serial.print(',');
Serial.print(binFile.firstBlock() + bn);
Serial.print(',');
Serial.println(block.overrun);
}
bn++;
}
if (!headerPrinted) {
Serial.println(F("No errors found"));
} else {
Serial.println(F("Done"));
}
}
//-----------------------------------------------------------------------------
// Convert binary file to csv file.
void binaryToCsv() {
uint8_t lastPct = 0;
block_t block;
uint32_t t0 = millis();
uint32_t syncCluster = 0;
SdFile csvFile;
char csvName[FILE_NAME_DIM];
if (!binFile.isOpen()) {
Serial.println();
Serial.println(F("No current binary file"));
return;
}
Serial.println();
Serial.print(F("FreeStack: "));
Serial.println(FreeStack());
// Create a new csvFile.
strcpy(csvName, binName);
strcpy(&csvName[BASE_NAME_SIZE + 3], "csv");
if (!csvFile.open(csvName, O_WRITE | O_CREAT | O_TRUNC)) {
error("open csvFile failed");
}
binFile.rewind();
Serial.print(F("Writing: "));
Serial.print(csvName);
Serial.println(F(" - type any character to stop"));
printHeader(&csvFile);
uint32_t tPct = millis();
while (!Serial.available() && binFile.read(&block, 512) == 512) {
uint16_t i;
if (block.count == 0 || block.count > DATA_DIM) {
break;
}
if (block.overrun) {
csvFile.print(F("OVERRUN,"));
csvFile.println(block.overrun);
}
for (i = 0; i < block.count; i++) {
printData(&csvFile, &block.data[i]);
}
if (csvFile.curCluster() != syncCluster) {
csvFile.sync();
syncCluster = csvFile.curCluster();
}
if ((millis() - tPct) > 1000) {
uint8_t pct = binFile.curPosition()/(binFile.fileSize()/100);
if (pct != lastPct) {
tPct = millis();
lastPct = pct;
Serial.print(pct, DEC);
Serial.println('%');
}
}
if (Serial.available()) {
break;
}
}
csvFile.close();
Serial.print(F("Done: "));
Serial.print(0.001*(millis() - t0));
Serial.println(F(" Seconds"));
}
//-----------------------------------------------------------------------------
void createBinFile() {
// max number of blocks to erase per erase call
const uint32_t ERASE_SIZE = 262144L;
uint32_t bgnBlock, endBlock;
// Delete old tmp file.
if (sd.exists(TMP_FILE_NAME)) {
Serial.println(F("Deleting tmp file " TMP_FILE_NAME));
if (!sd.remove(TMP_FILE_NAME)) {
error("Can't remove tmp file");
}
}
// Create new file.
Serial.println(F("\nCreating new file"));
binFile.close();
if (!binFile.createContiguous(TMP_FILE_NAME, 512 * FILE_BLOCK_COUNT)) {
error("createContiguous failed");
}
// Get the address of the file on the SD.
if (!binFile.contiguousRange(&bgnBlock, &endBlock)) {
error("contiguousRange failed");
}
// Flash erase all data in the file.
Serial.println(F("Erasing all data"));
uint32_t bgnErase = bgnBlock;
uint32_t endErase;
while (bgnErase < endBlock) {
endErase = bgnErase + ERASE_SIZE;
if (endErase > endBlock) {
endErase = endBlock;
}
if (!sd.card()->erase(bgnErase, endErase)) {
error("erase failed");
}
bgnErase = endErase + 1;
}
}
//------------------------------------------------------------------------------
// dump data file to Serial
void dumpData() {
block_t block;
if (!binFile.isOpen()) {
Serial.println();
Serial.println(F("No current binary file"));
return;
}
binFile.rewind();
Serial.println();
Serial.println(F("Type any character to stop"));
delay(1000);
printHeader(&Serial);
while (!Serial.available() && binFile.read(&block , 512) == 512) {
if (block.count == 0) {
break;
}
if (block.overrun) {
Serial.print(F("OVERRUN,"));
Serial.println(block.overrun);
}
for (uint16_t i = 0; i < block.count; i++) {
printData(&Serial, &block.data[i]);
}
}
Serial.println(F("Done"));
}
//------------------------------------------------------------------------------
// log data
void logData() {
createBinFile();
recordBinFile();
renameBinFile();
}
//------------------------------------------------------------------------------
void openBinFile() {
char name[FILE_NAME_DIM];
strcpy(name, binName);
Serial.println(F("\nEnter two digit version"));
Serial.write(name, BASE_NAME_SIZE);
for (int i = 0; i < 2; i++) {
while (!Serial.available()) {
SysCall::yield();
}
char c = Serial.read();
Serial.write(c);
if (c < '0' || c > '9') {
Serial.println(F("\nInvalid digit"));
return;
}
name[BASE_NAME_SIZE + i] = c;
}
Serial.println(&name[BASE_NAME_SIZE+2]);
if (!sd.exists(name)) {
Serial.println(F("File does not exist"));
return;
}
binFile.close();
strcpy(binName, name);
if (!binFile.open(binName, O_READ)) {
Serial.println(F("open failed"));
return;
}
Serial.println(F("File opened"));
}
//------------------------------------------------------------------------------
void recordBinFile() {
const uint8_t QUEUE_DIM = BUFFER_BLOCK_COUNT + 1;
// Index of last queue location.
const uint8_t QUEUE_LAST = QUEUE_DIM - 1;
// Allocate extra buffer space.
block_t block[BUFFER_BLOCK_COUNT - 1];
block_t* curBlock = 0;
block_t* emptyStack[BUFFER_BLOCK_COUNT];
uint8_t emptyTop;
uint8_t minTop;
block_t* fullQueue[QUEUE_DIM];
uint8_t fullHead = 0;
uint8_t fullTail = 0;
// Use SdFat's internal buffer.
emptyStack[0] = (block_t*)sd.vol()->cacheClear();
if (emptyStack[0] == 0) {
error("cacheClear failed");
}
// Put rest of buffers on the empty stack.
for (int i = 1; i < BUFFER_BLOCK_COUNT; i++) {
emptyStack[i] = &block[i - 1];
}
emptyTop = BUFFER_BLOCK_COUNT;
minTop = BUFFER_BLOCK_COUNT;
// Start a multiple block write.
if (!sd.card()->writeStart(binFile.firstBlock())) {
error("writeStart failed");
}
Serial.print(F("FreeStack: "));
Serial.println(FreeStack());
Serial.println(F("Logging - type any character to stop"));
bool closeFile = false;
uint32_t bn = 0;
uint32_t maxLatency = 0;
uint32_t overrun = 0;
uint32_t overrunTotal = 0;
uint32_t logTime = micros();
while(1) {
// Time for next data record.
logTime += LOG_INTERVAL_USEC;
if (Serial.available()) {
closeFile = true;
}
if (closeFile) {
if (curBlock != 0) {
// Put buffer in full queue.
fullQueue[fullHead] = curBlock;
fullHead = fullHead < QUEUE_LAST ? fullHead + 1 : 0;
curBlock = 0;
}
} else {
if (curBlock == 0 && emptyTop != 0) {
curBlock = emptyStack[--emptyTop];
if (emptyTop < minTop) {
minTop = emptyTop;
}
curBlock->count = 0;
curBlock->overrun = overrun;
overrun = 0;
}
if ((int32_t)(logTime - micros()) < 0) {
error("Rate too fast");
}
int32_t delta;
do {
delta = micros() - logTime;
} while (delta < 0);
if (curBlock == 0) {
overrun++;
overrunTotal++;
if (ERROR_LED_PIN >= 0) {
digitalWrite(ERROR_LED_PIN, HIGH);
}
#if ABORT_ON_OVERRUN
Serial.println(F("Overrun abort"));
break;
#endif // ABORT_ON_OVERRUN
} else {
#if USE_SHARED_SPI
sd.card()->spiStop();
#endif // USE_SHARED_SPI
acquireData(&curBlock->data[curBlock->count++]);
#if USE_SHARED_SPI
sd.card()->spiStart();
#endif // USE_SHARED_SPI
if (curBlock->count == DATA_DIM) {
fullQueue[fullHead] = curBlock;
fullHead = fullHead < QUEUE_LAST ? fullHead + 1 : 0;
curBlock = 0;
}
}
}
if (fullHead == fullTail) {
// Exit loop if done.
if (closeFile) {
break;
}
} else if (!sd.card()->isBusy()) {
// Get address of block to write.
block_t* pBlock = fullQueue[fullTail];
fullTail = fullTail < QUEUE_LAST ? fullTail + 1 : 0;
// Write block to SD.
uint32_t usec = micros();
if (!sd.card()->writeData((uint8_t*)pBlock)) {
error("write data failed");
}
usec = micros() - usec;
if (usec > maxLatency) {
maxLatency = usec;
}
// Move block to empty queue.
emptyStack[emptyTop++] = pBlock;
bn++;
if (bn == FILE_BLOCK_COUNT) {
// File full so stop
break;
}
}
}
if (!sd.card()->writeStop()) {
error("writeStop failed");
}
Serial.print(F("Min Free buffers: "));
Serial.println(minTop);
Serial.print(F("Max block write usec: "));
Serial.println(maxLatency);
Serial.print(F("Overruns: "));
Serial.println(overrunTotal);
// Truncate file if recording stopped early.
if (bn != FILE_BLOCK_COUNT) {
Serial.println(F("Truncating file"));
if (!binFile.truncate(512L * bn)) {
error("Can't truncate file");
}
}
}
//------------------------------------------------------------------------------
void recoverTmpFile() {
uint16_t count;
if (!binFile.open(TMP_FILE_NAME, O_RDWR)) {
return;
}
if (binFile.read(&count, 2) != 2 || count != DATA_DIM) {
error("Please delete existing " TMP_FILE_NAME);
}
Serial.println(F("\nRecovering data in tmp file " TMP_FILE_NAME));
uint32_t bgnBlock = 0;
uint32_t endBlock = binFile.fileSize()/512 - 1;
// find last used block.
while (bgnBlock < endBlock) {
uint32_t midBlock = (bgnBlock + endBlock + 1)/2;
binFile.seekSet(512*midBlock);
if (binFile.read(&count, 2) != 2) error("read");
if (count == 0 || count > DATA_DIM) {
endBlock = midBlock - 1;
} else {
bgnBlock = midBlock;
}
}
// truncate after last used block.
if (!binFile.truncate(512*(bgnBlock + 1))) {
error("Truncate " TMP_FILE_NAME " failed");
}
renameBinFile();
}
//-----------------------------------------------------------------------------
void renameBinFile() {
while (sd.exists(binName)) {
if (binName[BASE_NAME_SIZE + 1] != '9') {
binName[BASE_NAME_SIZE + 1]++;
} else {
binName[BASE_NAME_SIZE + 1] = '0';
if (binName[BASE_NAME_SIZE] == '9') {
error("Can't create file name");
}
binName[BASE_NAME_SIZE]++;
}
}
if (!binFile.rename(sd.vwd(), binName)) {
error("Can't rename file");
}
Serial.print(F("File renamed: "));
Serial.println(binName);
Serial.print(F("File size: "));
Serial.print(binFile.fileSize()/512);
Serial.println(F(" blocks"));
}
//------------------------------------------------------------------------------
void testSensor() {
const uint32_t interval = 200000;
int32_t diff;
data_t data;
Serial.println(F("\nTesting - type any character to stop\n"));
// Wait for Serial Idle.
delay(1000);
printHeader(&Serial);
uint32_t m = micros();
while (!Serial.available()) {
m += interval;
do {
diff = m - micros();
} while (diff > 0);
acquireData(&data);
printData(&Serial, &data);
}
}
//------------------------------------------------------------------------------
void setup(void) {
if (ERROR_LED_PIN >= 0) {
pinMode(ERROR_LED_PIN, OUTPUT);
}
Serial.begin(9600);
// Wait for USB Serial
while (!Serial) {
SysCall::yield();
}
Serial.print(F("\nFreeStack: "));
Serial.println(FreeStack());
Serial.print(F("Records/block: "));
Serial.println(DATA_DIM);
if (sizeof(block_t) != 512) {
error("Invalid block size");
}
// Allow userSetup access to SPI bus.
pinMode(SD_CS_PIN, OUTPUT);
digitalWrite(SD_CS_PIN, HIGH);
// Setup sensors.
userSetup();
// Initialize at the highest speed supported by the board that is
// not over 50 MHz. Try a lower speed if SPI errors occur.
if (!sd.begin(SD_CS_PIN, SD_SCK_MHZ(50))) {
sd.initErrorPrint(&Serial);
fatalBlink();
}
// recover existing tmp file.
if (sd.exists(TMP_FILE_NAME)) {
Serial.println(F("\nType 'Y' to recover existing tmp file " TMP_FILE_NAME));
while (!Serial.available()) {
SysCall::yield();
}
if (Serial.read() == 'Y') {
recoverTmpFile();
} else {
error("'Y' not typed, please manually delete " TMP_FILE_NAME);
}
}
}
//------------------------------------------------------------------------------
void loop(void) {
// Read any Serial data.
do {
delay(10);
} while (Serial.available() && Serial.read() >= 0);
Serial.println();
Serial.println(F("type:"));
Serial.println(F("b - open existing bin file"));
Serial.println(F("c - convert file to csv"));
Serial.println(F("d - dump data to Serial"));
Serial.println(F("e - overrun error details"));
Serial.println(F("l - list files"));
Serial.println(F("r - record data"));
Serial.println(F("t - test without logging"));
while(!Serial.available()) {
SysCall::yield();
}
#if WDT_YIELD_TIME_MICROS
Serial.println(F("LowLatencyLogger can not run with watchdog timer"));
SysCall::halt();
#endif
char c = tolower(Serial.read());
// Discard extra Serial data.
do {
delay(10);
} while (Serial.available() && Serial.read() >= 0);
if (ERROR_LED_PIN >= 0) {
digitalWrite(ERROR_LED_PIN, LOW);
}
if (c == 'b') {
openBinFile();
} else if (c == 'c') {
binaryToCsv();
} else if (c == 'd') {
dumpData();
} else if (c == 'e') {
checkOverrun();
} else if (c == 'l') {
Serial.println(F("\nls:"));
sd.ls(&Serial, LS_SIZE);
} else if (c == 'r') {
logData();
} else if (c == 't') {
testSensor();
} else {
Serial.println(F("Invalid entry"));
}
}

@ -1 +0,0 @@
// Empty file with name LowLatencyLoggerADXL345.ino to make IDE happy.

@ -1,70 +0,0 @@
#include "UserTypes.h"
// User data functions. Modify these functions for your data items.
// Start time for data
static uint32_t startMicros;
const uint8_t ADXL345_CS = 9;
const uint8_t POWER_CTL = 0x2D; //Power Control Register
const uint8_t DATA_FORMAT = 0x31;
const uint8_t DATAX0 = 0x32; //X-Axis Data 0
const uint8_t DATAX1 = 0x33; //X-Axis Data 1
const uint8_t DATAY0 = 0x34; //Y-Axis Data 0
const uint8_t DATAY1 = 0x35; //Y-Axis Data 1
const uint8_t DATAZ0 = 0x36; //Z-Axis Data 0
const uint8_t DATAZ1 = 0x37; //Z-Axis Data 1
void writeADXL345Register(const uint8_t registerAddress, const uint8_t value) {
// Max SPI clock frequency is 5 MHz with CPOL = 1 and CPHA = 1.
SPI.beginTransaction(SPISettings(5000000, MSBFIRST, SPI_MODE3));
digitalWrite(ADXL345_CS, LOW);
SPI.transfer(registerAddress);
SPI.transfer(value);
digitalWrite(ADXL345_CS, HIGH);
SPI.endTransaction();
}
void userSetup() {
SPI.begin();
pinMode(ADXL345_CS, OUTPUT);
digitalWrite(ADXL345_CS, HIGH);
//Put the ADXL345 into +/- 4G range by writing the value 0x01 to the DATA_FORMAT register.
writeADXL345Register(DATA_FORMAT, 0x01);
//Put the ADXL345 into Measurement Mode by writing 0x08 to the POWER_CTL register.
writeADXL345Register(POWER_CTL, 0x08); //Measurement mode
}
// Acquire a data record.
void acquireData(data_t* data) {
// Max SPI clock frequency is 5 MHz with CPOL = 1 and CPHA = 1.
SPI.beginTransaction(SPISettings(5000000, MSBFIRST, SPI_MODE3));
data->time = micros();
digitalWrite(ADXL345_CS, LOW);
// Read multiple bytes so or 0XC0 with address.
SPI.transfer(DATAX0 | 0XC0);
data->accel[0] = SPI.transfer(0) | (SPI.transfer(0) << 8);
data->accel[1] = SPI.transfer(0) | (SPI.transfer(0) << 8);
data->accel[2] = SPI.transfer(0) | (SPI.transfer(0) << 8);
digitalWrite(ADXL345_CS, HIGH);
SPI.endTransaction();
}
// Print a data record.
void printData(Print* pr, data_t* data) {
if (startMicros == 0) {
startMicros = data->time;
}
pr->print(data->time - startMicros);
for (int i = 0; i < ACCEL_DIM; i++) {
pr->write(',');
pr->print(data->accel[i]);
}
pr->println();
}
// Print data header.
void printHeader(Print* pr) {
startMicros = 0;
pr->println(F("micros,ax,ay,az"));
}

@ -1,17 +0,0 @@
#ifndef UserTypes_h
#define UserTypes_h
#include "Arduino.h"
#include "SPI.h"
#define USE_SHARED_SPI 1
#define FILE_BASE_NAME "ADXL4G"
// User data types. Modify for your data items.
const uint8_t ACCEL_DIM = 3;
struct data_t {
uint32_t time;
int16_t accel[ACCEL_DIM];
};
void acquireData(data_t* data);
void printData(Print* pr, data_t* data);
void printHeader(Print* pr);
void userSetup();
#endif // UserTypes_h

@ -1 +0,0 @@
Test of shared SPI for LowLatencyLogger.

@ -1,655 +0,0 @@
/**
* This program logs data to a binary file. Functions are included
* to convert the binary file to a csv text file.
*
* Samples are logged at regular intervals. The maximum logging rate
* depends on the quality of your SD card and the time required to
* read sensor data. This example has been tested at 500 Hz with
* good SD card on an Uno. 4000 HZ is possible on a Due.
*
* If your SD card has a long write latency, it may be necessary to use
* slower sample rates. Using a Mega Arduino helps overcome latency
* problems since 12 512 byte buffers will be used.
*
* Data is written to the file using a SD multiple block write command.
*/
#include <SPI.h>
#include "SdFat.h"
#include "FreeStack.h"
#include "UserTypes.h"
#ifdef __AVR_ATmega328P__
#include "MinimumSerial.h"
MinimumSerial MinSerial;
#define Serial MinSerial
#endif // __AVR_ATmega328P__
//==============================================================================
// Start of configuration constants.
//==============================================================================
// Abort run on an overrun. Data before the overrun will be saved.
#define ABORT_ON_OVERRUN 1
//------------------------------------------------------------------------------
//Interval between data records in microseconds.
const uint32_t LOG_INTERVAL_USEC = 2000;
//------------------------------------------------------------------------------
// Set USE_SHARED_SPI non-zero for use of an SPI sensor.
// May not work for some cards.
#ifndef USE_SHARED_SPI
#define USE_SHARED_SPI 0
#endif // USE_SHARED_SPI
//------------------------------------------------------------------------------
// Pin definitions.
//
// SD chip select pin.
const uint8_t SD_CS_PIN = SS;
//
// Digital pin to indicate an error, set to -1 if not used.
// The led blinks for fatal errors. The led goes on solid for
// overrun errors and logging continues unless ABORT_ON_OVERRUN
// is non-zero.
#ifdef ERROR_LED_PIN
#undef ERROR_LED_PIN
#endif // ERROR_LED_PIN
const int8_t ERROR_LED_PIN = -1;
//------------------------------------------------------------------------------
// File definitions.
//
// Maximum file size in blocks.
// The program creates a contiguous file with FILE_BLOCK_COUNT 512 byte blocks.
// This file is flash erased using special SD commands. The file will be
// truncated if logging is stopped early.
const uint32_t FILE_BLOCK_COUNT = 256000;
//
// log file base name if not defined in UserTypes.h
#ifndef FILE_BASE_NAME
#define FILE_BASE_NAME "data"
#endif // FILE_BASE_NAME
//------------------------------------------------------------------------------
// Buffer definitions.
//
// The logger will use SdFat's buffer plus BUFFER_BLOCK_COUNT-1 additional
// buffers.
//
#ifndef RAMEND
// Assume ARM. Use total of ten 512 byte buffers.
const uint8_t BUFFER_BLOCK_COUNT = 10;
//
#elif RAMEND < 0X8FF
#error Too little SRAM
//
#elif RAMEND < 0X10FF
// Use total of two 512 byte buffers.
const uint8_t BUFFER_BLOCK_COUNT = 2;
//
#elif RAMEND < 0X20FF
// Use total of four 512 byte buffers.
const uint8_t BUFFER_BLOCK_COUNT = 4;
//
#else // RAMEND
// Use total of 12 512 byte buffers.
const uint8_t BUFFER_BLOCK_COUNT = 12;
#endif // RAMEND
//==============================================================================
// End of configuration constants.
//==============================================================================
// Temporary log file. Will be deleted if a reset or power failure occurs.
#define TMP_FILE_NAME FILE_BASE_NAME "##.bin"
// Size of file base name.
const uint8_t BASE_NAME_SIZE = sizeof(FILE_BASE_NAME) - 1;
const uint8_t FILE_NAME_DIM = BASE_NAME_SIZE + 7;
char binName[FILE_NAME_DIM] = FILE_BASE_NAME "00.bin";
SdFat sd;
SdBaseFile binFile;
// Number of data records in a block.
const uint16_t DATA_DIM = (512 - 4)/sizeof(data_t);
//Compute fill so block size is 512 bytes. FILL_DIM may be zero.
const uint16_t FILL_DIM = 512 - 4 - DATA_DIM*sizeof(data_t);
struct block_t {
uint16_t count;
uint16_t overrun;
data_t data[DATA_DIM];
uint8_t fill[FILL_DIM];
};
//==============================================================================
// Error messages stored in flash.
#define error(msg) {sd.errorPrint(&Serial, F(msg));fatalBlink();}
//------------------------------------------------------------------------------
//
void fatalBlink() {
while (true) {
SysCall::yield();
if (ERROR_LED_PIN >= 0) {
digitalWrite(ERROR_LED_PIN, HIGH);
delay(200);
digitalWrite(ERROR_LED_PIN, LOW);
delay(200);
}
}
}
//------------------------------------------------------------------------------
// read data file and check for overruns
void checkOverrun() {
bool headerPrinted = false;
block_t block;
uint32_t bn = 0;
if (!binFile.isOpen()) {
Serial.println();
Serial.println(F("No current binary file"));
return;
}
binFile.rewind();
Serial.println();
Serial.print(F("FreeStack: "));
Serial.println(FreeStack());
Serial.println(F("Checking overrun errors - type any character to stop"));
while (binFile.read(&block, 512) == 512) {
if (block.count == 0) {
break;
}
if (block.overrun) {
if (!headerPrinted) {
Serial.println();
Serial.println(F("Overruns:"));
Serial.println(F("fileBlockNumber,sdBlockNumber,overrunCount"));
headerPrinted = true;
}
Serial.print(bn);
Serial.print(',');
Serial.print(binFile.firstBlock() + bn);
Serial.print(',');
Serial.println(block.overrun);
}
bn++;
}
if (!headerPrinted) {
Serial.println(F("No errors found"));
} else {
Serial.println(F("Done"));
}
}
//-----------------------------------------------------------------------------
// Convert binary file to csv file.
void binaryToCsv() {
uint8_t lastPct = 0;
block_t block;
uint32_t t0 = millis();
uint32_t syncCluster = 0;
SdFile csvFile;
char csvName[FILE_NAME_DIM];
if (!binFile.isOpen()) {
Serial.println();
Serial.println(F("No current binary file"));
return;
}
Serial.println();
Serial.print(F("FreeStack: "));
Serial.println(FreeStack());
// Create a new csvFile.
strcpy(csvName, binName);
strcpy(&csvName[BASE_NAME_SIZE + 3], "csv");
if (!csvFile.open(csvName, O_WRITE | O_CREAT | O_TRUNC)) {
error("open csvFile failed");
}
binFile.rewind();
Serial.print(F("Writing: "));
Serial.print(csvName);
Serial.println(F(" - type any character to stop"));
printHeader(&csvFile);
uint32_t tPct = millis();
while (!Serial.available() && binFile.read(&block, 512) == 512) {
uint16_t i;
if (block.count == 0 || block.count > DATA_DIM) {
break;
}
if (block.overrun) {
csvFile.print(F("OVERRUN,"));
csvFile.println(block.overrun);
}
for (i = 0; i < block.count; i++) {
printData(&csvFile, &block.data[i]);
}
if (csvFile.curCluster() != syncCluster) {
csvFile.sync();
syncCluster = csvFile.curCluster();
}
if ((millis() - tPct) > 1000) {
uint8_t pct = binFile.curPosition()/(binFile.fileSize()/100);
if (pct != lastPct) {
tPct = millis();
lastPct = pct;
Serial.print(pct, DEC);
Serial.println('%');
}
}
if (Serial.available()) {
break;
}
}
csvFile.close();
Serial.print(F("Done: "));
Serial.print(0.001*(millis() - t0));
Serial.println(F(" Seconds"));
}
//-----------------------------------------------------------------------------
void createBinFile() {
// max number of blocks to erase per erase call
const uint32_t ERASE_SIZE = 262144L;
uint32_t bgnBlock, endBlock;
// Delete old tmp file.
if (sd.exists(TMP_FILE_NAME)) {
Serial.println(F("Deleting tmp file " TMP_FILE_NAME));
if (!sd.remove(TMP_FILE_NAME)) {
error("Can't remove tmp file");
}
}
// Create new file.
Serial.println(F("\nCreating new file"));
binFile.close();
if (!binFile.createContiguous(TMP_FILE_NAME, 512 * FILE_BLOCK_COUNT)) {
error("createContiguous failed");
}
// Get the address of the file on the SD.
if (!binFile.contiguousRange(&bgnBlock, &endBlock)) {
error("contiguousRange failed");
}
// Flash erase all data in the file.
Serial.println(F("Erasing all data"));
uint32_t bgnErase = bgnBlock;
uint32_t endErase;
while (bgnErase < endBlock) {
endErase = bgnErase + ERASE_SIZE;
if (endErase > endBlock) {
endErase = endBlock;
}
if (!sd.card()->erase(bgnErase, endErase)) {
error("erase failed");
}
bgnErase = endErase + 1;
}
}
//------------------------------------------------------------------------------
// dump data file to Serial
void dumpData() {
block_t block;
if (!binFile.isOpen()) {
Serial.println();
Serial.println(F("No current binary file"));
return;
}
binFile.rewind();
Serial.println();
Serial.println(F("Type any character to stop"));
delay(1000);
printHeader(&Serial);
while (!Serial.available() && binFile.read(&block , 512) == 512) {
if (block.count == 0) {
break;
}
if (block.overrun) {
Serial.print(F("OVERRUN,"));
Serial.println(block.overrun);
}
for (uint16_t i = 0; i < block.count; i++) {
printData(&Serial, &block.data[i]);
}
}
Serial.println(F("Done"));
}
//------------------------------------------------------------------------------
// log data
void logData() {
createBinFile();
recordBinFile();
renameBinFile();
}
//------------------------------------------------------------------------------
void openBinFile() {
char name[FILE_NAME_DIM];
strcpy(name, binName);
Serial.println(F("\nEnter two digit version"));
Serial.write(name, BASE_NAME_SIZE);
for (int i = 0; i < 2; i++) {
while (!Serial.available()) {
SysCall::yield();
}
char c = Serial.read();
Serial.write(c);
if (c < '0' || c > '9') {
Serial.println(F("\nInvalid digit"));
return;
}
name[BASE_NAME_SIZE + i] = c;
}
Serial.println(&name[BASE_NAME_SIZE+2]);
if (!sd.exists(name)) {
Serial.println(F("File does not exist"));
return;
}
binFile.close();
strcpy(binName, name);
if (!binFile.open(binName, O_READ)) {
Serial.println(F("open failed"));
return;
}
Serial.println(F("File opened"));
}
//------------------------------------------------------------------------------
void recordBinFile() {
const uint8_t QUEUE_DIM = BUFFER_BLOCK_COUNT + 1;
// Index of last queue location.
const uint8_t QUEUE_LAST = QUEUE_DIM - 1;
// Allocate extra buffer space.
block_t block[BUFFER_BLOCK_COUNT - 1];
block_t* curBlock = 0;
block_t* emptyStack[BUFFER_BLOCK_COUNT];
uint8_t emptyTop;
uint8_t minTop;
block_t* fullQueue[QUEUE_DIM];
uint8_t fullHead = 0;
uint8_t fullTail = 0;
// Use SdFat's internal buffer.
emptyStack[0] = (block_t*)sd.vol()->cacheClear();
if (emptyStack[0] == 0) {
error("cacheClear failed");
}
// Put rest of buffers on the empty stack.
for (int i = 1; i < BUFFER_BLOCK_COUNT; i++) {
emptyStack[i] = &block[i - 1];
}
emptyTop = BUFFER_BLOCK_COUNT;
minTop = BUFFER_BLOCK_COUNT;
// Start a multiple block write.
if (!sd.card()->writeStart(binFile.firstBlock())) {
error("writeStart failed");
}
Serial.print(F("FreeStack: "));
Serial.println(FreeStack());
Serial.println(F("Logging - type any character to stop"));
bool closeFile = false;
uint32_t bn = 0;
uint32_t maxLatency = 0;
uint32_t overrun = 0;
uint32_t overrunTotal = 0;
uint32_t logTime = micros();
while(1) {
// Time for next data record.
logTime += LOG_INTERVAL_USEC;
if (Serial.available()) {
closeFile = true;
}
if (closeFile) {
if (curBlock != 0) {
// Put buffer in full queue.
fullQueue[fullHead] = curBlock;
fullHead = fullHead < QUEUE_LAST ? fullHead + 1 : 0;
curBlock = 0;
}
} else {
if (curBlock == 0 && emptyTop != 0) {
curBlock = emptyStack[--emptyTop];
if (emptyTop < minTop) {
minTop = emptyTop;
}
curBlock->count = 0;
curBlock->overrun = overrun;
overrun = 0;
}
if ((int32_t)(logTime - micros()) < 0) {
error("Rate too fast");
}
int32_t delta;
do {
delta = micros() - logTime;
} while (delta < 0);
if (curBlock == 0) {
overrun++;
overrunTotal++;
if (ERROR_LED_PIN >= 0) {
digitalWrite(ERROR_LED_PIN, HIGH);
}
#if ABORT_ON_OVERRUN
Serial.println(F("Overrun abort"));
break;
#endif // ABORT_ON_OVERRUN
} else {
#if USE_SHARED_SPI
sd.card()->spiStop();
#endif // USE_SHARED_SPI
acquireData(&curBlock->data[curBlock->count++]);
#if USE_SHARED_SPI
sd.card()->spiStart();
#endif // USE_SHARED_SPI
if (curBlock->count == DATA_DIM) {
fullQueue[fullHead] = curBlock;
fullHead = fullHead < QUEUE_LAST ? fullHead + 1 : 0;
curBlock = 0;
}
}
}
if (fullHead == fullTail) {
// Exit loop if done.
if (closeFile) {
break;
}
} else if (!sd.card()->isBusy()) {
// Get address of block to write.
block_t* pBlock = fullQueue[fullTail];
fullTail = fullTail < QUEUE_LAST ? fullTail + 1 : 0;
// Write block to SD.
uint32_t usec = micros();
if (!sd.card()->writeData((uint8_t*)pBlock)) {
error("write data failed");
}
usec = micros() - usec;
if (usec > maxLatency) {
maxLatency = usec;
}
// Move block to empty queue.
emptyStack[emptyTop++] = pBlock;
bn++;
if (bn == FILE_BLOCK_COUNT) {
// File full so stop
break;
}
}
}
if (!sd.card()->writeStop()) {
error("writeStop failed");
}
Serial.print(F("Min Free buffers: "));
Serial.println(minTop);
Serial.print(F("Max block write usec: "));
Serial.println(maxLatency);
Serial.print(F("Overruns: "));
Serial.println(overrunTotal);
// Truncate file if recording stopped early.
if (bn != FILE_BLOCK_COUNT) {
Serial.println(F("Truncating file"));
if (!binFile.truncate(512L * bn)) {
error("Can't truncate file");
}
}
}
//------------------------------------------------------------------------------
void recoverTmpFile() {
uint16_t count;
if (!binFile.open(TMP_FILE_NAME, O_RDWR)) {
return;
}
if (binFile.read(&count, 2) != 2 || count != DATA_DIM) {
error("Please delete existing " TMP_FILE_NAME);
}
Serial.println(F("\nRecovering data in tmp file " TMP_FILE_NAME));
uint32_t bgnBlock = 0;
uint32_t endBlock = binFile.fileSize()/512 - 1;
// find last used block.
while (bgnBlock < endBlock) {
uint32_t midBlock = (bgnBlock + endBlock + 1)/2;
binFile.seekSet(512*midBlock);
if (binFile.read(&count, 2) != 2) error("read");
if (count == 0 || count > DATA_DIM) {
endBlock = midBlock - 1;
} else {
bgnBlock = midBlock;
}
}
// truncate after last used block.
if (!binFile.truncate(512*(bgnBlock + 1))) {
error("Truncate " TMP_FILE_NAME " failed");
}
renameBinFile();
}
//-----------------------------------------------------------------------------
void renameBinFile() {
while (sd.exists(binName)) {
if (binName[BASE_NAME_SIZE + 1] != '9') {
binName[BASE_NAME_SIZE + 1]++;
} else {
binName[BASE_NAME_SIZE + 1] = '0';
if (binName[BASE_NAME_SIZE] == '9') {
error("Can't create file name");
}
binName[BASE_NAME_SIZE]++;
}
}
if (!binFile.rename(sd.vwd(), binName)) {
error("Can't rename file");
}
Serial.print(F("File renamed: "));
Serial.println(binName);
Serial.print(F("File size: "));
Serial.print(binFile.fileSize()/512);
Serial.println(F(" blocks"));
}
//------------------------------------------------------------------------------
void testSensor() {
const uint32_t interval = 200000;
int32_t diff;
data_t data;
Serial.println(F("\nTesting - type any character to stop\n"));
// Wait for Serial Idle.
delay(1000);
printHeader(&Serial);
uint32_t m = micros();
while (!Serial.available()) {
m += interval;
do {
diff = m - micros();
} while (diff > 0);
acquireData(&data);
printData(&Serial, &data);
}
}
//------------------------------------------------------------------------------
void setup(void) {
if (ERROR_LED_PIN >= 0) {
pinMode(ERROR_LED_PIN, OUTPUT);
}
Serial.begin(9600);
// Wait for USB Serial
while (!Serial) {
SysCall::yield();
}
Serial.print(F("\nFreeStack: "));
Serial.println(FreeStack());
Serial.print(F("Records/block: "));
Serial.println(DATA_DIM);
if (sizeof(block_t) != 512) {
error("Invalid block size");
}
// Allow userSetup access to SPI bus.
pinMode(SD_CS_PIN, OUTPUT);
digitalWrite(SD_CS_PIN, HIGH);
// Setup sensors.
userSetup();
// Initialize at the highest speed supported by the board that is
// not over 50 MHz. Try a lower speed if SPI errors occur.
if (!sd.begin(SD_CS_PIN, SD_SCK_MHZ(50))) {
sd.initErrorPrint(&Serial);
fatalBlink();
}
// recover existing tmp file.
if (sd.exists(TMP_FILE_NAME)) {
Serial.println(F("\nType 'Y' to recover existing tmp file " TMP_FILE_NAME));
while (!Serial.available()) {
SysCall::yield();
}
if (Serial.read() == 'Y') {
recoverTmpFile();
} else {
error("'Y' not typed, please manually delete " TMP_FILE_NAME);
}
}
}
//------------------------------------------------------------------------------
void loop(void) {
// Read any Serial data.
do {
delay(10);
} while (Serial.available() && Serial.read() >= 0);
Serial.println();
Serial.println(F("type:"));
Serial.println(F("b - open existing bin file"));
Serial.println(F("c - convert file to csv"));
Serial.println(F("d - dump data to Serial"));
Serial.println(F("e - overrun error details"));
Serial.println(F("l - list files"));
Serial.println(F("r - record data"));
Serial.println(F("t - test without logging"));
while(!Serial.available()) {
SysCall::yield();
}
#if WDT_YIELD_TIME_MICROS
Serial.println(F("LowLatencyLogger can not run with watchdog timer"));
SysCall::halt();
#endif
char c = tolower(Serial.read());
// Discard extra Serial data.
do {
delay(10);
} while (Serial.available() && Serial.read() >= 0);
if (ERROR_LED_PIN >= 0) {
digitalWrite(ERROR_LED_PIN, LOW);
}
if (c == 'b') {
openBinFile();
} else if (c == 'c') {
binaryToCsv();
} else if (c == 'd') {
dumpData();
} else if (c == 'e') {
checkOverrun();
} else if (c == 'l') {
Serial.println(F("\nls:"));
sd.ls(&Serial, LS_SIZE);
} else if (c == 'r') {
logData();
} else if (c == 't') {
testSensor();
} else {
Serial.println(F("Invalid entry"));
}
}

@ -1,2 +0,0 @@
// Empty file with name LowLatencyLoggerMPU6050.ino to make IDE happy.

@ -1,51 +0,0 @@
// User data functions. Modify these functions for your data items.
#include "UserTypes.h"
#include "Wire.h"
#include "I2Cdev.h"
#include "MPU6050.h"
//------------------------------------------------------------------------------
MPU6050 mpu;
static uint32_t startMicros;
// Acquire a data record.
void acquireData(data_t* data) {
data->time = micros();
mpu.getMotion6(&data->ax, &data->ay, &data->az,
&data->gx, &data->gy, &data->gz);
}
// setup AVR I2C
void userSetup() {
#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
Wire.begin();
Wire.setClock(400000);
#elif I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE
Fastwire::setup(400, true);
#endif
mpu.initialize();
}
// Print a data record.
void printData(Print* pr, data_t* data) {
if (startMicros == 0) {
startMicros = data->time;
}
pr->print(data->time- startMicros);
pr->write(',');
pr->print(data->ax);
pr->write(',');
pr->print(data->ay);
pr->write(',');
pr->print(data->az);
pr->write(',');
pr->print(data->gx);
pr->write(',');
pr->print(data->gy);
pr->write(',');
pr->println(data->gz);
}
// Print data header.
void printHeader(Print* pr) {
startMicros = 0;
pr->println(F("micros,ax,ay,az,gx,gy,gz"));
}

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save